Abstract
Fully Homomorphic Encryption (\(\mathsf {FHE}\)) is a cryptographic primitive that allows computing over encrypted data without decrypting the corresponding ciphertexts. In general, existing \(\mathsf {FHE}\) schemes can be achieved using standard Learning with Errors (\(\mathsf {LWE}\)) assumption and most of the schemes are single-bit encryption. Hence, the construction of multi-bit \(\mathsf {FHE}\) with high efficiency remains an open problem in cryptography. In this paper, we propose multi-bit versions of Public Key Encryption (\(\mathsf {PKE}\)) via the dual \(\mathsf {LWE}\)-based firstly proposed by Gentry, Peikert, and Vaikuntanathan at STOC 2008. We initially develop an universal construction derived from a general structure of the underlying combined public matrix for constructing the multi-bit version which increases the size of ciphertexts linearly. Then, utilizing multi-bit \(\mathsf {PKE}\) scheme as building block, we propose a new multi-bit \(\mathsf {FHE}\) scheme under the assumption of decisional \(\mathsf {LWE}\) is hard and prove the scheme is \(\textsc {IND-CPA}\)-secure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is worth mentioning that \(\mathsf {LWE}\) is a generalization of “learning parities with noise” (LPN) which is the special case where \(q = 2\) and \(\chi \) is a Bernoulli distribution over \(\{0, 1\}\).
- 2.
If we choose \(\mathsf {Dual.LWE}\)-based with binary secret, i.e. \(\mathbf {e}\leftarrow \{0,1\}^{m}\), implying \(||\mathbf {error}||\le \sqrt{m\cdot N}\cdot B_{\chi ^{m}}\).
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_28
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_17
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_1
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM (2013)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106. IEEE (2011)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_29
Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_20
Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_31
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_24
Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178 (2009)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5
Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrapping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_31
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)
Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_2
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_21
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_43
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_41
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_26
Nuida, K., Kurosawa, K.: (Batch) Fully homomorphic encryption over integers for non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_21
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2009)
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_31
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)
Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs Codes Cryptography 71(1), 57–81 (2014)
Acknowledgements
We would like to thank all anonymous reviewers for their helpful advice and comments. This work was supported by the National Natural Science Foundation of China (Grant No. 61472097), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20132304110017).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Li, Z., Ma, C., Morais, E., Du, G. (2017). Multi-bit Leveled Homomorphic Encryption via \(\mathsf {Dual.LWE}\)-Based. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-54705-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54704-6
Online ISBN: 978-3-319-54705-3
eBook Packages: Computer ScienceComputer Science (R0)