Skip to main content

Cryptanalysis of a Homomorphic Encryption Scheme Over Integers

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Included in the following conference series:

  • 1245 Accesses

Abstract

At Eurocrypt 2010, van Dijk et al. described a fully homomorphic encryption scheme (abbreviated as DGHV) over integers. It is conceptually simple but the public key size is large. After DGHV scheme was proposed, many variants of DGHV schemes with smaller public key size were proposed. In this paper, we present a multi-ciphertexts attack on a variant of the DGHV scheme with much smaller public key (abbreviated as \(HE^{RK}\)), which was proposed by Govinda Ramaiah and Vijaya Kumari at CNC 2012. Multi-ciphertexts attack considers the security of the schemes when the attacker captures a certain amount of ciphertexts. It is a common phenomena that the attacker can easily obtain enough ciphertexts in most of practical applications of fully homomorphic encryptions (even for public-key schemes). For all the four groups of the recommended parameters of \(HE^{RK}\), we can recover the plaintexts successfully if we only capture five ciphertexts. Our attack only needs to apply LLL algorithm twice on two small dimension lattices, and the data show that the plaintexts can be recovered in seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_17

    Chapter  Google Scholar 

  2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS 2011

    Google Scholar 

  3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  4. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  5. Cohn, H., Heninger, N.: Approximate common divisors via lattices, Cryptology ePrint Archive, Report 2011/437 (2011). http://eprint.iacr.org/

  6. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0_18

    Chapter  Google Scholar 

  7. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_28

    Chapter  Google Scholar 

  8. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_30

    Chapter  Google Scholar 

  9. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_27

    Chapter  Google Scholar 

  10. Cad\(\acute{e}\), D., Pujol, X., Stehl\(\acute{e}\), D.: FPLLL library, version 3.0, Sep 2008. http://perso.ens-lyon.fr/damien.stehle

  11. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_20

    Google Scholar 

  12. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  13. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. Thesis, Stanford University (2009). http://crypto.stanford.edu/craig

  14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  15. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_7

    Chapter  Google Scholar 

  16. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_9

    Chapter  Google Scholar 

  17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  18. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). doi:10.1007/3-540-44670-2_6

    Chapter  Google Scholar 

  19. Lenstra, A.K., Lenstra Jr., H.W., Lov\(\acute{a}\)sz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Google Scholar 

  20. Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997). doi:10.1007/BFb0052236

    Chapter  Google Scholar 

  21. Nguyen, P.Q., Stehl\(\acute{e}\), D.: An LLL algorithm with quadratic complexity. SIAM J. Comput. 39(3), 874–903 (2009)

    Google Scholar 

  22. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor- phisms. In: Foundations of Secure Computation, pp. 169–180 (1978)

    Google Scholar 

  23. Ramaiah, Y.G., Kumari, G.V.: Efficient public key generation for homomorphic encryption over the integers. In: Das, V.V., Stephen, J. (eds.) CNC 2012. LNICSSITE, vol. 108, pp. 262–268. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35615-5_40

    Chapter  Google Scholar 

  24. Ramaiah, Y.G., Kumari, G.V.: Towards practical homomorphic encryption with efficient public key generation, pp. 10–17. ACEEE Int. J. Netw. Secur. 03(04), 1–8 (2012)

    Google Scholar 

  25. Shoup, V.: NTL, Number Theory C++ Library. http://www.shoup.net/ntl/

  26. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_25

    Chapter  Google Scholar 

Download references

Acknowledgments

This paper is partially supported by: 973 Program grant 2013CB834205, NSF of China under grants No. 61502269 & 61133013 & 61272035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bi, J., Liu, J., Wang, X. (2017). Cryptanalysis of a Homomorphic Encryption Scheme Over Integers. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics