Skip to main content

Sensitivity Analysis of Granularity Levels in Complex Biological Networks

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 690))

Abstract

The influx of biomedical measurement technologies continues to define a rapidly changing and growing landscape, multi-modal and uncertain in nature. The focus of the biomedical research community shifted from pure data generation to the development of methodologies for data analytics. Although many researchers continue to focus on approaches developed for analyzing single types of biological data, recent attempts have been made to utilize the availability of multiple heterogeneous data sets that contain various types of data and try to establish tools for data fusion and analysis in many bioinformatics applications. At the heart of this initiative is the attempt to consolidate the domain knowledge and experimental data sources in order to enhance our understanding of highly-specific conditions dependent on sensory data containing inherent error. This challenge refers to granularity: the specificity or mereology of alternate information sources may impact the final data fusion. In an earlier work, we employed data integration methods to analyze biological data obtained from protein interaction networks and gene expression data. We conducted a study to show that potential problems can arise from integrating or fusing data obtained at different granularity levels and highlight the importance of developing advanced data fusing techniques to integrate various types of biological data for analytical purposes. In this work, we explore the impact of granularity from a more formulized approach and show that granularity levels significantly impact the quality of knowledge extracted from the heterogeneous data sets. Further, we extend our previous results to study the relationship between granularity and knowledge extraction across multiple diseases, examining generalizability and estimating the utility of a similar methodology to reflect the impact of granularity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W., Pages, F., Trajanoski, Z., Galon, J.: ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8), 1091–1093 (2009)

    Article  Google Scholar 

  • Bittner, T., Smith, B.: A theory of granular partitions. Found. Geogr. Inf. Sci. 7, 124–125 (2003)

    Google Scholar 

  • Bittner, T., Donnelly, M., Smith, B.: Individuals, universals, collections: on the foundational relations of ontology. In: Proceedings of the Third Conference on Formal Ontology in Information Systems, pp. 37–48, November 2004

    Google Scholar 

  • Brazma, A.: Minimum information about a microarray experiment (MIAME)–successes, failures, challenges. Sci. World J. 9, 420–423 (2009)

    Article  Google Scholar 

  • Ceol, A., Aryamontri, A. C., Licata, L., Peluso, D., Briganti, L., Perfetto, L., Castagnoli, L., Cesareni, G.: MINT, the molecular interaction database: 2009 update. Nucleic Acids Res. (2009). doi:10.1093/nar/gkp983

  • Chatr-aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage, L., Tyers, M.: The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41(D1), D816–D823 (2013)

    Article  Google Scholar 

  • Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Santos, A., Tsafou, K., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41(D1), D808-D815 (2013)

    Article  Google Scholar 

  • Greer, J.E., McCalla, G.I.: A computational framework for granularity and its application to educational diagnosis. In: IJCAI, pp. 477–482, August 1989

    Google Scholar 

  • Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Proceedings of the 32nd international Conference on Very Large Data Bases, pp. 9–16. VLDB Endowment, September 2006

    Google Scholar 

  • Hobbs, J.R.: Granularity. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence (1985)

    Google Scholar 

  • Hobbs, J.R.: Sketch of an ontology underlying the way we talk about the world. Int. J. Hum. Comput. Stud. 43(5), 819–830 (1995)

    Article  Google Scholar 

  • Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–1111 (2010)

    Article  Google Scholar 

  • Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits, C., Jimenez, R.C., Khadake, J., Mahadevan, U., Masson, P., Pedruzzi, I., Pfeiffenberger, E., Porras, P., Raghunath, A., Roechert, B., Orchard, S., Hermjakob, H.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. (2011). doi:10.1093/nar/gkr1088

  • Liu, Z., Cao, J., Gao, X., Zhou, Y., Wen, L., Yang, X., Xuebiao, Y., Ren, J., Xue, Y.: CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res. 39(suppl. 1), D1029–D1034 (2011)

    Article  Google Scholar 

  • McCalla, G., Greer, J., Barrie, B., Pospisil, P.: Granularity hierarchies. Comput. Math Appl. 23(2), 363–375 (1992)

    Article  MATH  Google Scholar 

  • Obayashi, T., Kinoshita, K.: Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 16(5), 249–260 (2009)

    Article  Google Scholar 

  • Prasad, T.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Sebastian, A., Rani, S., Ray, S., Harrys Kishore, C.J., Kanth, S., Ahmed, M., Kashyap, M.K., Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady, R., Pandey, A., Pandey, A.: Human protein reference database—2009 update. Nucleic Acids Res. 37(suppl. 1), D767–D772 (2009)

    Article  Google Scholar 

  • Rector, A., Rogers, J., Bittner, T.: Granularity, scale and collectivity: when size does and does not matter. J. Biomed. Inform. 39(3), 333–349 (2006)

    Article  Google Scholar 

  • Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32(suppl. 1), D449–D451 (2004)

    Article  Google Scholar 

  • SÅ‚owiÅ„ski, R., Greco, S., Matarazzo, B.: Rough-set-based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 557–609. Springer, New York (2014)

    Google Scholar 

  • Sun, B., Ma, W.: Multigranulation rough set theory over two universes. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 28(3), 1251–1269 (2015)

    MathSciNet  MATH  Google Scholar 

  • Veres, D.V., Gyurkó, D.M., Thaler, B., Szalay, K. Z., Fazekas, D., Korcsmáros, T., Csermely, P.: ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis. Nucleic Acids Res. (2014). doi:10.1093/nar/gku1007

  • Vogt, L., Grobe, P., Quast, B., Bartolomaeus, T.: Accommodating ontologies to biological reality–top-level categories of cumulative-constitutively organized material entities. PLoS ONE 7(1), e30004 (2012)

    Article  Google Scholar 

  • West, S., Ali, H.: On the impact of granularity in extracting knowledge from bioinformatics data. In: The 7th International Conference on Bioinformatics Models, Methods, and Algorithms (Bioinformatics 2016), Rome, Italy, 22–25 February 2016

    Google Scholar 

  • White, F.E.: Data fusion lexicon. Joint Directors of Labs Washington DC(1991)

    Google Scholar 

  • Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4(1), 1128 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

West, S., Ali, H. (2017). Sensitivity Analysis of Granularity Levels in Complex Biological Networks. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54717-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54716-9

  • Online ISBN: 978-3-319-54717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics