Skip to main content

Algorithm for Temporal Gait Analysis Using Wireless Foot-Mounted Accelerometers

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2016)

Abstract

We present a new signal processing algorithm that extracts five gait events: heel strike, toe strike, heel-off, toe-off, and heel clearance from only two accelerometers attached on the heels of the subjects usual shoes. This algorithm first uses a continuous wavelet-based segmentation that parses the signal of consecutive strides into motionless periods defining relevant local acceleration signals. Then, the algorithm uses versatile techniques to accurately extract the five gait events from these local acceleration signals. We validated, on a stride-by-stride basis, the extraction of these gait events by comparing the results with reference data provided by a kinematic 3D analysis system and a video camera. The accuracy and precision achieved by the extraction algorithm for healthy subjects, the reduced number of accelerometer units required, and the validation results obtained, encourage us to further study this system in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashton-Miller, J.A.: Age-associated changes in the biomechanics of gait and gait-related falls in older adults. Neurol. Dis. Ther. 73, 63–100 (2005)

    Article  Google Scholar 

  2. Verghese, J., LeValley, A., Hall, C.B., Katz, M.J., Ambrose, A.F., Lipton, R.B.: Epidemiology of gait disorders in community-residing older adults. J. Am. Geriatr. Soc. 54(2), 255–261 (2006)

    Article  Google Scholar 

  3. Verghese, J., Lipton, R.B., Hall, C.B., Kuslansky, G., Katz, M.J., Buschke, H.: Abnormality of gait as a predictor of non-Alzheimer’s dementia. New Engl. J. Med. 347(22), 1761–1768 (2002)

    Article  Google Scholar 

  4. Gillain, S., Warzee, E., Lekeu, F., Wojtasik, V., Maquet, D., Croisier, J.-L., Salmon, E., Petermans, J.: The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Ann. Phys. Rehabil. Med. 52(6), 453–474 (2009)

    Article  Google Scholar 

  5. Stolze, H., Klebe, S., Zechlin, C., Baecker, C., Friege, L., Deuschl, G.: Falls in frequent neurological diseases: prevalence, risk factors and aetiology. J. Neurol. 251(1), 79–84 (2004)

    Article  Google Scholar 

  6. Willemsen, A.T.M., Bloemhof, F., Boom, H.B.: Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. IEEE Trans. Biomed. Eng. 37(12), 1–8 (1990)

    Article  Google Scholar 

  7. Aminian, K., Rezakhanlou, K., Andres, E., Fritsch, C., Leyvraz, P.-F., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med. Biol. Eng. Comput. 37(6), 686–691 (1999)

    Article  Google Scholar 

  8. Selles, R.W., Formanoy, M.A.G., Bussmann, J.B.J., Janssens, P.J., Stam, H.J.: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 81–88 (2005)

    Article  Google Scholar 

  9. Lee, J.-.A., Cho, S.-H., Lee, J.-W., Lee, K.-H., Yang, H.-K.: Wearable accelerometer system for measuring the temporal parameters of gait. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 23–26 (2007)

    Google Scholar 

  10. Godfrey, A., Conway, R., Meagher, D., ÓLaighin, G.: Direct measurement of human movement by accelerometry. Med. Eng. Phys. 30(10), 1364–1386 (2008)

    Article  Google Scholar 

  11. Khandelwal, S., Wickström, N.: Identification of gait events using expert knowledge and continuous wavelet transform analysis. In: Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, pp. 197–204 (2014)

    Google Scholar 

  12. Stamatakis, J., Crémers, J., Maquet, D., Macq, B., Garraux, G.: Gait feature extraction in Parkinson’s disease using low-cost accelerometers. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7900–7903 (2011)

    Google Scholar 

  13. Salarian, A., Russmann, H., Vingerhoets, F.J.G., Dehollain, C., Blanc, Y., Burkhard, P.R., Aminian, K.: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51(8), 1434–1443 (2004)

    Article  Google Scholar 

  14. Rueterbories, J., Spaich, E.G., Larsen, B., Andersen, O.K.: Methods for gait event detection and analysis in ambulatory systems. Med. Eng. Phys. 32(6), 545–552 (2010)

    Article  Google Scholar 

  15. Pappas, I.P., Popovic, M.R., Keller, T., Dietz, V., Morari, M.: A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 9(2), 113–125 (2001)

    Article  Google Scholar 

  16. Moore, S.T., MacDougall, H.G., Gracies, J.-M., Cohen, H.S., Ondo, W.G.: Long-term monitoring of gait in Parkinson’s disease. Gait Posture 26(2), 200–207 (2007)

    Article  Google Scholar 

  17. Aminian, K., Najafi, B., Büla, C., Leyvraz, P.F., Robert, P.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 35, 689–699 (2002)

    Article  Google Scholar 

  18. Han, J., Jeon, H.S., Jeon, B.S., Park, K.S.: Gait detection from three dimensional acceleration signals of ankles for the patients with Parkinson’s disease. In: Proceedings of the IEEE International Special Topic Conference on Information Technology in Biomedicine, vol. 2628 (2006)

    Google Scholar 

  19. Sabatini, A.M., Martelloni, C., Scapellato, S., Cavallo, F.: Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 52, 486–494 (2005)

    Article  Google Scholar 

  20. Mannini, A., Sabatini, A.M.: A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope. In: Proceedings of the IEEE Annual International Conference of the Engineering in Medicine and Biology Society, pp. 4369–4373 (2011)

    Google Scholar 

  21. Guenterberg, E., Yang, A.Y., Ghasemzadeh, H., Jafari, R., Bajcsy, R., Sastry, S.S.: A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors. IEEE Trans. Inf Technol. Biomed. 13, 1019–1030 (2010)

    Article  Google Scholar 

  22. Ying, H., Silex, C., Schnitzer, A., Leonhardt, S., Schiek, M.: Automatic step detection in the accelerometer signal. In: Proceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Networks, pp. 80–85 (2007)

    Google Scholar 

  23. Brauner, T., Oriwol, D., Sterzing, T., Milani, T.L.: A single gyrometer inside an instrumented running shoe allows mobile determination of gait cycle and pronation velocity during outdoor running. Footwear Sci. 1, 25–26 (2009)

    Article  Google Scholar 

  24. Barth, J., Oberndorfer, C., Pasluosta, C., Schülein, S., Gassner, H., Reinfelder, S., Kugler, P., Schuldhaus, D., Winkler, J., Klucken, J., Eskofier, B.M.: Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 15, 6419–6440 (2015)

    Article  Google Scholar 

  25. Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., Fukui, Y.: Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 188–196 (2002)

    Article  Google Scholar 

  26. Yuwono, M., Su, S.W., Moulton, B.D., Nguyen, H.T.: Unsupervised segmentation of heel-strike IMU data using rapid cluster estimation of wavelet features. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 953–956 (2013)

    Google Scholar 

  27. Boutaayamou, M., Schwartz, C., Stamatakis, J., Denoël, V., Maquet, D., Forthomme, B., Croisier, J.-L., Macq, B., Verly, J.G., Garraux, G., Brüls, O.: Validated extraction of gait events from 3D accelerometer recordings. In: The International Conference on 3D Imaging, pp. 1–4 (2012)

    Google Scholar 

  28. Boutaayamou, M., Schwartz, C., Stamatakis, J., Denoël, V., Maquet, D., Forthomme, B., Croisier, J.-L., Macq, B., Verly, J.G., Garraux, G., Brüls, O.: Development and validation of an accelerometer-based method for quantifying gait events. Med. Eng. Phys. 37, 226–232 (2015)

    Article  Google Scholar 

  29. Whittle, W.: Clinical gait analysis: a review. Hum. Mov. Sci. 15, 369–387 (1996)

    Article  Google Scholar 

  30. Boutaayamou, M., Schwartz, C., Denoël, V., Forthomme, B., Croisier, J.-L., Garraux, G., Verly, J.G., Brüls, O.: Development and validation of a 3D kinematic-based method for determining gait events during overground walking. In: The International Conference on 3D Imaging, pp. 1–6 (2014)

    Google Scholar 

  31. Rampp, A., Barth, J., Schülein, S., Gamann, K.-G., Klucken, J., Eskofier, B.M.: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 62(4), 1089–1097 (2015)

    Article  Google Scholar 

  32. Auvinet, B., Chaleil, D., Barrey, E.: Analyse de la marche humaine dans la pratique hospitalière par une méthode accélérométrique. Revue du Rhumatisme 66(7–9), 447–457 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution of J. Stamatakis and B. Macq through the design of the accelerometer-based hardware system used in the present study. The authors would like also to thank all the participants to the gait tests of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boutaayamou .

Editor information

Editors and Affiliations

Appendix

Appendix

We present the piecewise-linear fitting method used to estimate the locations of the convex curvature in a signal (Sect. 2.4). For this, we consider a given signal \(sig = sig(t_1 ),sig(t_2),\dots ,sig(t_N)\) defined in a time interval \(I=t_1,t_2,\dots ,t_N\), where N is the total number of samples of sig. This method first computes the coefficients of piecewise-linear functions with two linear segments that best fit sig in the least-square sense, leading to the computation of least-square errors. The minimum of these least-square errors is then determined and the associated piecewise-linear function provides two linear segments that intersect at the breakpoint \((t_b,sig(t_b))\). The main steps to determine the breakpoint \((t_b,sig(t_b))\) are as follows:

  • For each \(k=1,\dots ,N\), one computes the coefficients \(\alpha _1\), \(\alpha _2\), \(\beta _1\), and \(\beta _2\) of a piecewise-linear function \(p_k\) that best fits sig by minimizing

    $$\begin{aligned} E_k=\sum _{i=1}^{N} (sig(t_i)-p_k (t_i))^2, \end{aligned}$$
    (3)

    where

    $$\begin{aligned} p_k (t) = \left\{ \begin{array}{lll} \alpha _1*t+\beta _1, &{}\quad \textit{if}\; t\in [t_1,t_k],\\ \alpha _2*t+\beta _2, &{}\quad \textit{if}\; t\in [t_{k+1},t_N]. \end{array}\right. \end{aligned}$$
    (4)

    This error can be expressed as

    $$\begin{aligned} E_k=||A\,X_k-B||^2, \end{aligned}$$
    (5)

    where

    $$\begin{aligned} X_k=\left( \begin{array}{l} \alpha _1\\ \beta _1 \end{array}\right) \, A=\left( \begin{array}{ll} t_1\, &{} 1\\ \vdots \, &{} \vdots \\ t_k\, &{}1 \end{array}\right) \, B=\left( \begin{array}{l} sig(t_1)\\ \vdots \\ sig(t_k) \end{array}\right) \, if\, t\in [t_1,t_k], \end{aligned}$$

    and

    $$\begin{aligned} X_k=\left( \begin{array}{l} \alpha _2\\ \beta _2 \end{array}\right) \, A=\left( \begin{array}{ll} t_{k+1}\, &{} 1\\ \vdots \, &{} \vdots \\ t_N\, &{}1 \end{array}\right) \, B=\left( \begin{array}{l} sig(t_{k+1})\\ \vdots \\ sig(t_N) \end{array}\right) \, if\, t\in [t_{k+1},t_N], \end{aligned}$$

    The normal equations associated with (5) are

    $$\begin{aligned} A^{t}AX_k=A^{t}B. \end{aligned}$$
    (6)

    Solving (6) leads to the coefficients \(\alpha _1\), \(\alpha _2\), \(\beta _1\), and \(\beta _2\).

  • Finally, one obtains the breakpoint \((t_b,sig(t_b))\) by determining the minimum of the least-square errors, i.e.,

    $$\begin{aligned} E_b=\underset{k=1,\dots ,N}{min} (E_k). \end{aligned}$$
    (7)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boutaayamou, M. et al. (2017). Algorithm for Temporal Gait Analysis Using Wireless Foot-Mounted Accelerometers. In: Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2016. Communications in Computer and Information Science, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-319-54717-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54717-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54716-9

  • Online ISBN: 978-3-319-54717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics