Skip to main content

Time-Optimal Paths for a Robotic Batting Task

  • Chapter
  • First Online:
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 430))

  • 992 Accesses

Abstract

This paper presents a novel method to optimize the motion of a paddle within a nonprehensile batting task. The proposed approach shows that it is possible to online predict the impact time and the configuration of the paddle, in terms of its linear velocity and orientation, to re-direct a ball towards a desired location, imposing also a desired spin during the free flight. While exploiting the hybrid dynamics of the task during the minimization process, the obtained position and orientation paths are planned by minimizing the acceleration function of the paddle in SE(3). The batting paths are then tracked by a semi-humanoid robot through a closed-loop kinematic inversion. Numerical tests are implemented to compare different metrics to define the optimal impact time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason, M.T., Lynch, K.M.: Dynamic manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 152–159. Tokyo, J (1993)

    Google Scholar 

  2. Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: controllability, planning, and experiments. Int. J. Robot. Res. 18(64), 64–92 (1999)

    Article  Google Scholar 

  3. Serra, D.: Robot control for nonprehensile dynamic manipulation tasks. In: International Conference on Informatics in Control, Automation and Robotics, Doctoral Consortium, pp. 3–12. Lisbon, PT (2016)

    Google Scholar 

  4. Serra, D., Satici, A.C., Ruggiero, F., Lippiello, V., Siciliano, B.: An optimal trajectory planner for a robotic batting task: the table tennis example. In: International Conference on Informatics in Control, Automation and Robotics, pp. 90–101. Lisbon, P (2016)

    Google Scholar 

  5. Andersson, R.L.: A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control. MIT Press, Cambridge (1988)

    Google Scholar 

  6. Andersson, R.L.: Aggressive trajectory generator for a robot ping-pong player. IEEE Control Syst. Mag. 9(2), 15–21 (1989)

    Article  Google Scholar 

  7. Acosta, L., Rodrigo, J.J., Mendez, J., Marichal, G.N., Sigut, M.: Ping-pong player prototype. IEEE Robot. Autom. Mag. 10(4), 44–52 (2003)

    Article  Google Scholar 

  8. Senoo, T., Namiki, A., Ishikawa, M.: Ball control in high-speed batting motion using hybrid trajectory generator. In: IEEE International Conference on Robotics and Automation, pp. 1762–1767. Orlando, FL, USA (2006)

    Google Scholar 

  9. Sun, Y., Xiong, R., Zhu, Q., Wu, J., Chu, J.: Balance motion generation for a humanoid robot playing table tennis. In: IEEE-RAS International Conference on Humanoid Robots, pp. 19–25. Bled, SI (2011)

    Google Scholar 

  10. Liu, C., Hayakawa, Y., Nakashima, A.: Racket control and its experiments for robot playing table tennis. In: IEEE International Conference on Robotics and Biomimetics, pp. 241–246. Guangzhou, CN (2012)

    Google Scholar 

  11. Lai, C.H., Tsay, T.I.J.: Self-learning for a humanoid robotic ping-pong player. Adv. Robot. 25(9–10), 1183–1208 (2011)

    Article  Google Scholar 

  12. Zhang, Y., Xiong, R., Zhao, Y., Chu, J.: An adaptive trajectory prediction method for ping-pong robots. Intelligent Robotics and Applications, pp. 448–459. Springer, Berlin (2012)

    Google Scholar 

  13. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013)

    Article  Google Scholar 

  14. Huang, Y., Xu, D., Tan, M., Su, H.: Adding active learning to LWR for ping-pong playing robot. IEEE Trans. Control Syst. Technol. 21(4), 1489–1494 (2013)

    Article  Google Scholar 

  15. Yanlong, H., Bernhard, S., Jan, P.: Learning optimal striking points for a ping-pong playing robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4587–4592. Hamburg, D (2015)

    Google Scholar 

  16. Huang, Y., Büchler, D., Schölkopf, B., Peters, J.: Jointly learning trajectory generation and hitting point prediction in robot table tennis. In: IEEE-RAS International Conference on Humanoid Robots, pp. 650–655. Cancun, MX (2016)

    Google Scholar 

  17. +8 Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.: Using probabilistic movement primitives for striking movements. In: IEEE-RAS International Conference on Humanoid Robots, pp. 502–508. Cancun, MX (2016)

    Google Scholar 

  18. Müller, M., Lupashin, S., D’Andrea, R.: Quadrocopter ball juggling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5113–5120. San Francisco, CA, USA (2011)

    Google Scholar 

  19. Silva, R., Melo, F.S., Veloso, M.: Towards table tennis with a quadrotor autonomous learning robot and onboard vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 649–655. Hamburg, D (2015)

    Google Scholar 

  20. Wei, D., Guo-Ying, G., Ye, D., Xiangyang, Z., Han, D.: Ball juggling with an under-actuated flying robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 68–73. Hamburg, D (2015)

    Google Scholar 

  21. Nonomura, J., Nakashima, A., Hayakawa, Y.: Analysis of effects of rebounds and aerodynamics for trajectory of table tennis ball. In: IEEE Society of Instrument and Control Engineers Conference, pp. 1567–1572. Taipei, TW (2010)

    Google Scholar 

  22. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Science & Business Media, New York (2010)

    Google Scholar 

  23. Nakashima, A., Ito, D., Hayakawa, Y.: An online trajectory planning of struck ball with spin by table tennis robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 865–870. Besançon, F (2014)

    Google Scholar 

  24. do Carmo, M.P.: Riemannian Geometry. Mathematics. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  25. Zefran, M., Kumar, V., Croke, C.B.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)

    Article  Google Scholar 

  26. Lippiello, V., Ruggiero, F.: 3D monocular robotic ball catching with an iterative trajectory estimation refinement. In: IEEE International Conference on Robotics and Automation, pp. 3950–3955. Saint Paul, MN, USA (2012)

    Google Scholar 

  27. Cigliano, P., Lippiello, V., Ruggiero, F., Siciliano, B.: Robotic ball catching with an eye-in-hand single-camera system. IEEE Trans. Control Syst. Technol. 23(5), 1657–1671 (2015)

    Article  Google Scholar 

  28. Serra, D., Satici, A.C., Ruggiero, F., Lippiello, V., Siciliano, B.: An optimal trajectory planner for a robotic batting task: the table tennis example (2016). [web page] https://youtu.be/GXtBvbUHu5s

  29. Nakashima, A., Ogawa, Y., Kobayashi, Y., Hayakawa, Y.: Modeling of rebound phenomenon of a rigid ball with friction and elastic effects. In: IEEE American Control Conference, pp. 1410–1415. Baltimore, MD, USA (2010)

    Google Scholar 

  30. Lourakis, M.I.A., levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++ (2004). [web page] http://www.ics.forth.gr/~lourakis/levmar/. Accessed 31 Jan 2005

  31. Serra, D., Ruggiero, F., Lippiello, V., Siciliano, B.: A Nonlinear least squares approach for nonprehensile dual-hand robotic ball juggling. World Congress of the International Federation of Automatic Control. Tolouse, FR (2017)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has been supported by the RoDyMan project, which has received funding from the European Research Council FP7 Ideas under Advanced Grant agreement number 320992.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serra, D., Ruggiero, F., Satici, A.C., Lippiello, V., Siciliano, B. (2018). Time-Optimal Paths for a Robotic Batting Task. In: Madani, K., Peaucelle, D., Gusikhin, O. (eds) Informatics in Control, Automation and Robotics . Lecture Notes in Electrical Engineering, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-55011-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55011-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55010-7

  • Online ISBN: 978-3-319-55011-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics