Abstract
The interoperability of Electronic Health Records (EHR) and Clinical Decision Support (CDS) systems is a major challenge in the medical informatics field. International initiatives propose the use of ontologies for bridging both types of systems. The next-generation of EHR and CDS systems are supposed to use ontologies, or at least ontologies should be fundamental for enabling their interoperability. This situation makes necessary to analyze if current ontologies are ready for playing such intended role. In this paper we describe and discuss some important issues that need to be solved in order to have optimal ontologies for such a purpose, such as the need for increasing reuse in ontologies, as well as getting axiomatically richer ontologies. We also describe how our recent research results in the areas of ontology enrichment and ontology evaluation may contribute to such a goal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
References
Health Level 7.: Arden Syntax for Medical Logic Systems Standard Version 2.6. Ann Arbor, MI: Health Level 7 (2007)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nature Genet. 25(1), 25–29 (2000)
Beale, T.: Archetypes: constraint-based domain models for future-proof information systems. In: OOPSLA 2002 Workshop on Behavioural Semantics, vol. 105 (2002)
Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)
Bouamrane, M.-M., Rector, A., Hurrell, M.: Using owl ontologies for adaptive patient information modelling and preoperative clinical decision support. Knowl. Inform. Syst. 29(2), 405–418 (2011)
Breasted, J.H.: The Edwin Smith Surgical Papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary in two volumes, vol. 3. Chic. UP (1930)
Chen, R., Corbal, I.: Guideline definition language (gdl). Release 0.9, pp. 1–23 (2013)
Duque-Ramos, A., Fernández-Breis, J.T., Stevens, R., Aussenac-Gilles, R.N., et al.: Oquare: a square-based approach for evaluating the quality of ontologies. J. Res. Pract. Inform. Technol. 43(2), 159 (2011)
Duque-Ramos, A., Quesada-Martínez, M., Iniesta-Moreno, M., Fernández-Breis, J.T., Stevens, R.: Supporting the analysis of ontology evolution processes through the combination of static and dynamic scaling functions in oquare. J. Biomed. Semant. 7(1), 63 (2016)
Farion, K., Michalowski, W., Wilk, S., O’Sullivan, D.M., Rubin, S., Weiss, D.: Clinical decision support system for point of care use: ontology driven design and software implementation. Meth. Inform. Med. 48(4), 381–390 (2009)
Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the proforma approach. Artif. Intell. Med. 14(1), 157–182 (1998)
Goble, C., Stevens, R.: Stevens.: state of the nation in data integration for bioinformatics. J. Biomed. Inform. 41(5), 687–693 (2008)
Hawkins, M., Ralley, R., Young, J.: A medical panorama: the casebooks project. Book 2.0 4(1–2), 61–69 (2014)
Ingram, D.: The good european health record. In: Laires, M.F., Ladeira, M.F., Christensen, J.P. (eds.) Health in the New Communication Age, pp. 66–74. IOS (1995)
Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77(12), 787–808 (2008)
Isern, D., Sánchez, D., Moreno, A.: Ontology-driven execution of clinical guidelines. Comput. Meth. Programs Biomed. 107(2), 122–139 (2012)
Kalra, D., Lewalle, P., Rector, A., Rodrigues, J.M., Stroetmann, K.A., Surjan, G., Ustun, B., Virtanen, M., Zanstra, P.E.: Semantic interoperability for better health and safer healthcare. Research and Deployment Roadmap for Europe. SemanticHEALTH Project Report, Published by the European Commission (2009). http://ec.europa.eu/information_society/ehealth
Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T., Maldonado, J.A.: A model-driven approach for representing clinical archetypes for semantic web environments. J. Biomed. Inform. 42(1), 150–164 (2009)
Menárguez-Tortosa, M., Fernández-Breis, J.T.: Owl-based reasoning methods for validating archetypes. J. Biomed. Inform. 46(2), 304–317 (2013)
Montero, M.A., Prado, S.: Electronic health record as a knowledge management tool in the scope of health. In: Riaño, D. (ed.) K4HelP 2008. LNCS (LNAI), vol. 5626, pp. 152–166. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03262-2_12
Mosa, A.S.M., Yoo, I., Sheets, L.: A systematic review of healthcare applications for smartphones. BMC Med. Inform. Decis. Making 12(1), 1 (2012)
Musen, M.A., Middleton, B., Greenes, R.A.: Clinical decision-support systems. In: Shortliffe, E.H., Cimino, J.J. (eds.) Biomedical Informatics, pp. 643–674. Springer, New York (2014)
Ohno-Machado, L., Gennari, J.H., Murphy, S.N., Jain, N.L., Tu, S.W., Oliver, D.E., Pattison-Gordon, E., Greenes, R.A., Shortliffe, E.H., Barnett, G.O.: The guideline interchange format. J. Am. Med. Inform. Assoc. 5(4), 357–372 (1998)
Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. inform. 46(4), 744–763 (2013)
Quesada-Martínez, M., Fernández-Breis, J.T., Karlsson, D.: Suggesting missing relations in biomedical ontologies based on lexical regularities. Stud. Health Technol. Inform. 228, 384 (2016)
Quesada-Martínez, M., Fernández-Breis, J.T., Stevens, R.: Lexical characterization and analysis of the BioPortal ontologies. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 206–215. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38326-7_31
Quesada-Martínez, M., Fernández-Breis, J.T., Stevens, R.: Lexical characterisation of bio-ontologies by the inspection of regularities in labels. Curr. Bioinform. 10(2), 165–176 (2015)
Rector, A., Iannone, L.: Lexically suggest, logically define: quality assurance of the use of qualifiers and expected results of post-coordination in snomed ct. J. Biomed. Inform. 45(2), 199–209 (2012)
Rector, A.L., Johnson, P.D., Tu, S., Wroe, C., Rogers, J.: Interface of inference models with concept and medical record models. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 314–323. Springer, Heidelberg (2001). doi:10.1007/3-540-48229-6_43
Schober, D., Tudose, I., Svatek, V., Boeker, M.: Ontocheck: verifying ontology naming conventions and metadata completeness in protégé 4. J. Biomed. Semant. 3(2), 1 (2012)
Shahar, Y., Young, O., Shalom, E., Galperin, M., Mayaffit, A., Moskovitch, R., Hessing, A.: A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J. Biomed. Inform. 37(5), 325–344 (2004)
Sherman, R.: Computer system clears up errors, lets nurses get back to nursing: a progress report from children’s hospital, Akron, Ohio. Hosp. Top. 43(10), 44–46 (1965)
Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., et al.: The obo foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnol. 25(11), 1251–1255 (2007)
Tao, C., Jiang, G., Oniki, T.A., Freimuth, R.R., Zhu, Q., Sharma, D., Pathak, J., Huff, S.M., Chute, C.G.: A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J. Am. Med. Inform. Assoc. 20(3), 554–562 (2013)
Third, A.: Hidden semantics: what can we learn from the names in an ontology? In: Proceedings of the Seventh International Natural Language Generation Conference, pp. 67–75. Association for Computational Linguistics (2012)
Tu, S.W., Eriksson, H., Gennari, J.H., Shahar, Y., Musen, M.A.: Ontology-based configuration of problem-solving methods and generation of knowledge-acquisition tools: application of protege-ii to protocol-based decision support. Artif. Intell. Med. 7(3), 257–289 (1995)
Warner, H.R., Toronto, A.F., Veasey, L.G., Stephenson, R.: A mathematical approach to medical diagnosis: application to congenital heart disease. Jama 177(3), 177–183 (1961)
Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)
Wright, A., Sittig, D.F.: A four-phase model of the evolution of clinical decision support architectures. Int. J. Med. Inform. 77(10), 641–649 (2008)
Yao, W., Kumar, A.: Conflexflow: Integrating flexible clinical pathways into clinical decision support systems using context and rules. Decis. Support Syst. 55(2), 499–515 (2013)
Acknowledgements
This work has been partially funded by to the Spanish Ministry of Economy and Competitiveness, the FEDER Programme and by the Fundación Séneca through grants TIN2014-53749-C2-2-R and 19371/PI/14.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fernández-Breis, J.T., Quesada-Martínez, M., Duque-Ramos, A. (2017). Can Existing Biomedical Ontologies Be More Useful for EHR and CDS?. In: Riaño, D., Lenz, R., Reichert, M. (eds) Knowledge Representation for Health Care. ProHealth KR4HC 2016 2016. Lecture Notes in Computer Science(), vol 10096. Springer, Cham. https://doi.org/10.1007/978-3-319-55014-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-55014-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55013-8
Online ISBN: 978-3-319-55014-5
eBook Packages: Computer ScienceComputer Science (R0)