Skip to main content

Multi-scale and Modality Dropout Learning for Intervertebral Disc Localization and Segmentation

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10182))

  • 1185 Accesses

Abstract

Automatic localization and segmentation of intervertebral discs (IVDs) from volumetric magnetic resonance (MR) images is important for spine disease diagnosis. It dramatically alleviates the workload of radiologists given that the traditional manual annotation is time-consuming and error-prone with limited reproducibility. Compared with single modality data, multi-modality MR images are able to provide complementary information. However, how to effectively integrate them to generate more accurate segmentation results still remains open for studies. In this paper, we introduce a multi-scale and modality dropout learning framework to segment IVDs from four-modality MR images. Specifically, we design a 3D fully convolutional network which takes multiple scales of images as input and merges these pathways at higher layers to jointly integrate multi-scale information. Furthermore, in order to harness the complementary information from different modalities, we propose a modality dropout strategy to alleviate the co-adaption issue during the training. We evaluated our method on the MICCAI 2016 Challenge on Automatic Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR Images. Our method achieved the best overall performance with the mean segmentation Dice as 91.2% and localization error as 0.62 mm, which demonstrated the superiority of our proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://ivdm3seg.weebly.com

  2. Ben Ayed, I., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 221–232. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_19

    Chapter  Google Scholar 

  3. Cai, Y., Landis, M., Laidley, D.T., Kornecki, A., Lum, A., Li, S.: Multi-modal vertebrae recognition using transformed deep convolution network. Comput. Med. Imaging Graph. 51, 11–19 (2016)

    Article  Google Scholar 

  4. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in mr images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  5. Chen, H., Dou, Q., Wang, X., Qin, J., Cheng, J.C.Y., Heng, P.-A.: 3D fully convolutional networks for intervertebral disc localization and segmentation. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 375–382. Springer, Cham (2016). doi:10.1007/978-3-319-43775-0_34

    Chapter  Google Scholar 

  6. Chen, H., Dou, Q., Yu, L., Heng, P.A.: VoxResNet: deep voxelwise residual networks for volumetric brain segmentation. arXiv preprint arXiv:1608.05895 (2016)

  7. Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A.: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_63

    Chapter  Google Scholar 

  8. Chevrefils, C., Chériet, F., Grimard, G., Aubin, C.-E.: Watershed segmentation of intervertebral disk and spinal canal from MRI images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1017–1027. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74260-9_90

    Chapter  Google Scholar 

  9. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  10. Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automatically pinpointing classification evidence in spinal MRIs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 166–175. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_20

    Chapter  Google Scholar 

  11. Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segmen. 13 (2015)

    Google Scholar 

  12. Law, M.W., Tay, K., Leung, A., Garvin, G.J., Li, S.: Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)

    Article  Google Scholar 

  13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Wang, Z., Zhen, X., Tay, K., Osman, S., Romano, W., Li, S.: Regression segmentation for spinal images. IEEE Trans. Med. Imaging 34(8), 1640–1648 (2015)

    Article  Google Scholar 

  15. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Li, X., Dou, Q., Chen, H., Fu, CW., Heng, PA. (2016). Multi-scale and Modality Dropout Learning for Intervertebral Disc Localization and Segmentation. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2016. Lecture Notes in Computer Science(), vol 10182. Springer, Cham. https://doi.org/10.1007/978-3-319-55050-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55050-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55049-7

  • Online ISBN: 978-3-319-55050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics