Skip to main content

Integrable Autonomous Devices for WSNs

  • Conference paper
  • First Online:
Sensors (CNS 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 431))

Included in the following conference series:

Abstract

We here present an energy harvesting system for low power sensor applications. The system is a dual band architecture able to capture the largest amount of EM radiation available in the urban environment and to provide an autonomous device potentially with infinitive cycle of use. The device is tuned to receive both GSM and Wi-Fi frequencies and a power battery loading circuitry is available on board to guarantee the required energy for the autonomous sensor to work. The whole system, designed using a discrete board, has been also conceived in order to be completely integrated in a standard CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Al Agha, M.-H. Bertin, T. Dang, A. Guitton, P. Minet, T. Val, J.-B. Viollet, Which wireless technology for industrial wireless sensor networks? The development of OCARI technology. IEEE Trans. Ind. Electron. 56(10), 4266–4278 (2009)

    Article  Google Scholar 

  2. A. Liberale, E. Dallago, A.L. Barnabei, G. Torelli, G. Venchi, Ultra low-voltage supervisor for energy scavenging system, in Proceedings of the 11th Conference on Ph.D. Research Microelectron. Electron (PRIME). Glasgow, Scotland, UK, June 29–July 02, 2015

    Google Scholar 

  3. Y. Tan, S. Panda, Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE Trans. Power Electron. 26(99), 1 (2011)

    Google Scholar 

  4. S.E. Lyshevski, High-power density miniscale power generation and energy harvesting systems. Energy Convers. Manag. 52(1), 46–52 (2011)

    Article  Google Scholar 

  5. A. Karalis, J. Joannopoulos, M. Soljacic, Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1), 34–48 (2008)

    Article  Google Scholar 

  6. V.C. Gungor, G.P. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)

    Article  Google Scholar 

  7. M. Ferri, D. Pinna, E. Dallago, P. Malcovati, 0.35 µm CMOS solar scavenger with power storaging mangement system, in Proceedings of IEEE Ph.D. Research in Microelectronics and Electronics (PRIME) (Cork, Ireland, 2009). 12–17 July 2009

    Google Scholar 

  8. A.L. Barnabei, E. Dallago, P. Malcovati, A. Liberale, An improved ultra-low-power wireless sensor-station supplied by a photovoltaic harvester, in 9th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2013, pp. 205–208

    Google Scholar 

  9. A. Dolgov, R. Zane, Z. Popovic, Power management system for online low power RF energy harvesting optimization. IEEE Trans. Circuits Syst. I Regul. Pap. 57(7), 1802–1811 (2010)

    Article  MathSciNet  Google Scholar 

  10. S.L. Brunton, C.W. Rowley, S.R. Kulkarni, C. Clarkson, Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE Trans. Power Electron. 25(10), 2531–2540 (2010)

    Article  Google Scholar 

  11. M.A. Hannan, F.A. Azidin, A. Mohamed, Multi-sources model and control algorithm of an energy management system for light electric vehicles. Energy Convers. Manag. 62, 123–130 (2012)

    Article  Google Scholar 

  12. Y. Levron, D. Shmilovitz, A power management strategy for minimization of energy storage reservoirs in wireless systems with energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 1–11 (2010)

    Google Scholar 

  13. R.-Y. Kim, J.-S. Lai, B. York, A. Koran, Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system. IEEE Trans. Industr. Electron. 56(9), 3709–3716 (2009)

    Article  Google Scholar 

  14. G. Leuzzi, V. Stornelli, S. Del Re, A tuneable active inductor with high dynamic range for band-pass filter applications. IEEE Trans. Circuits Syst. II Express Briefs 58(10), 647–651 (2011)

    Article  Google Scholar 

  15. V. Janicek, M. Husak, J. Jakovenko, J. Formanek, Design and fabrication of 3D electrostatic energy harvester. Radioeng. J. 21(1) (2012)

    Google Scholar 

  16. L. Pantoli, V. Stornelli, G. Leuzzi, Low voltage high-order agile active filter for microwave applications, in 2013 European Microwave Conference (EuMC) (Nuremberg, 2013), pp. 1203–1206

    Google Scholar 

  17. V. Stornelli, Low voltage low power fully differential buffer. J. Circuits Syst. Comput. 18(3), 497–502 (2009)

    Article  Google Scholar 

  18. L. Pantoli, V. Stornelli, G. Leuzzi, Class AB tunable active inductor. Electron. Lett. 51(1), 65–67 (2015). doi:10.1049/el.2014.3877

    Article  Google Scholar 

  19. H. Xiao, H. Shao, K. Yang, F. Yang, W. Wang, Multiple timescale energy scheduling for wireless communication with energy harvesting devices. Radioengineering 21(3) (2012)

    Google Scholar 

  20. V. Stornelli, L. Pantoli, G. Leuzzi, G. Ferri, Fully differential DDA-based fifth and seventh order Bessel low pass filters and buffers for DCR radio systems. Analog Integr. Circ. Sig. Process. 75(2), 305–310 (2013)

    Article  Google Scholar 

  21. B. Merabet, L. Cirio, H. Takhedmit, F. Costa, C. Vollaire, B. Allard, O. Picon, Low-cost converter for harvesting of microwave electromagnetic energy. IEEE Energy Convers. Congr. Exp. 2592–2599 (2009)

    Google Scholar 

  22. G. Ferri, V. Stornelli, A. Celeste, Integrated rail-to-rail low-voltage low-power enhanced DC-gain fully differential operational transconductance amplifier. ETRI J. 29(6), 785–793 (2007)

    Article  Google Scholar 

  23. G. Ferri, V. Stornelli, A. Di Simone, A CCII-based high impedance input stage for biomedical applications. J. Circuits Syst. Comput. 20(8), 1441–1447 (2011)

    Article  Google Scholar 

  24. V. Stornelli, G. Ferri, A single current conveyor-based low voltage low power bootstrap circuit for ElectroCardioGraphy and ElectroEncephaloGraphy acquisition systems. Analog Integr. Circ. Sig. Process. 79(1), 171–175 (2014)

    Article  Google Scholar 

  25. V. Stornelli, G. Ferri, A 0.18 μm CMOS DDCCII for portable LV-LP filters. Radioengineering 22(2), 434–439 (2013)

    Google Scholar 

  26. V. Stornelli, L. Pantoli, G. Leuzzi, High quality factor L-band active inductor-based band-pass filters. J. Circuits Syst. Comput. 22(03) (2013)

    Google Scholar 

  27. G. Leuzzi, V. Stornelli, L. Pantoli, S. Del Re, Single transistor high linearity and wide dynamic range active inductor. Int. J. Circuit Theory Appl. 43(3), 277–285 (2015)

    Article  Google Scholar 

  28. P. Branchi, L. Pantoli, V. Stornelli, G. Leuzzi, RF and microwave high-Q floating active inductor design and implementation. Int. J. Circuit Theory Appl. 43(8), 1095–1104 (2015)

    Article  Google Scholar 

  29. A. De Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectron. J. 40(1), 20–25 (2009)

    Article  Google Scholar 

  30. A. De Marcellis, C. Di Carlo, G. Ferri, V. Stornelli, A CCII-based wide frequency range square waveform generator. Int. J. Circuit Theory Appl. 41(1), 1–13 (2013)

    Google Scholar 

  31. L. Pantoli, V. Stornelli, G. Leuzzi, Tunable active filters for RF and microwave applications, J. Circuits Syst. Comput. 23 (2014)

    Google Scholar 

  32. L. Pantoli, V. Stornelli, G. Leuzzi, A single-transistor tunable filter for Bluetooth applications, in 2012 7th European Microwave Integrated Circuits Conference (EuMIC) (Amsterdam, 2012), pp. 889–892

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stornelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Pantoli, L., Leoni, A., Parente, F.R., Stornelli, V., Ferri, G. (2018). Integrable Autonomous Devices for WSNs. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-55077-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55077-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55076-3

  • Online ISBN: 978-3-319-55077-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics