Skip to main content

Towards Landscape-Aware Automatic Algorithm Configuration: Preliminary Experiments on Neutral and Rugged Landscapes

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10197))

Abstract

The proper setting of algorithm parameters is a well-known issue that gave rise to recent research investigations from the (offline) automatic algorithm configuration perspective. Besides, the characteristics of the target optimization problem is also a key aspect to elicit the behavior of a dedicated algorithm, and as often considered from a landscape analysis perspective. In this paper, we show that fitness landscape analysis can open a whole set of new research opportunities for increasing the effectiveness of existing automatic algorithm configuration methods. Specifically, we show that using landscape features in iterated racing both (i) at the training phase, to compute multiple elite configurations explicitly mapped with different feature values, and (ii) at the production phase, to decide which configuration to use on a feature basis, provides significantly better results compared against the standard landscape-oblivious approach. Our first experimental investigations on NK-landscapes, considered as a benchmark family having controllable features in terms of ruggedness and neutrality, and tackled using a memetic algorithm with tunable population size and variation operators, show that a landscape-aware approach is a viable alternative to handle the heterogeneity of (black-box) combinatorial optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)

    Google Scholar 

  2. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  3. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 54(1), 99–114 (2006)

    Article  MATH  Google Scholar 

  5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

    MATH  Google Scholar 

  6. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  7. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12(3), 303–325 (2004)

    Article  Google Scholar 

  8. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence Complexity and Computation. Springer, Heidelberg (2014)

    Google Scholar 

  9. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Conference on Artificial Intelligence, pp. 210–216 (2010)

    Google Scholar 

  11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  12. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm configuration. In: European Conference on Artificial Intelligence, pp. 751–756 (2010)

    Google Scholar 

  13. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  14. Weinberger, E.D.: Correlated and uncorrelatated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)

    Article  MATH  Google Scholar 

  15. Verel, S., Collard, P., Clergue, M.: Scuba search: when selection meets innovation. In: Congress on Evolutionary Computation, pp. 924–931 (2004)

    Google Scholar 

  16. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_18

    Chapter  Google Scholar 

  17. Newman, M., Engelhardt, R.: Effect of neutral selection on the evolution of molecular species. Proc. R. Soc. London B. 256, 1333–1338 (1998)

    Article  Google Scholar 

  18. Barnett, L.: Ruggedness and neutrality - the NKp family of fitness landscapes. In: International Conference on Artificial Life, pp. 18–27 (1998)

    Google Scholar 

  19. Pelikan, M.: Analysis of estimation of distribution algorithms and genetic algorithms on NK landscapes. In: Genetic and Evolutionary Computation Conference, pp. 1033–1040 (2008)

    Google Scholar 

Download references

Acknowledgments

We are grateful to M. López-Ibáñez for fruitful suggestions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Liefooghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K. (2017). Towards Landscape-Aware Automatic Algorithm Configuration: Preliminary Experiments on Neutral and Rugged Landscapes. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55453-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55452-5

  • Online ISBN: 978-3-319-55453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics