Skip to main content

CRF-Based Brain Tumor Segmentation: Alleviating the Shrinking Bias

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10154))

  • 2107 Accesses

Abstract

This paper extends a previously published brain tumor segmentation method with a dense Conditional Random Field (CRF). Dense CRFs can overcome the shrinking bias inherent to many grid-structured CRFs. We focus on illustrating the impact of alleviating the shrinking bias on the performance of CRF-based brain tumor segmentation. The proposed segmentation method is evaluated using data from the MICCAI BRATS 2013 & 2015 data sets (up to 110 patient cases for testing) and compared to a baseline method using a grid-structured CRF. Improved segmentation performance for the complete and enhancing tumor was observed with respect to grid-structured CRFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, S., Fejes, T., Reyes, M.: A skull-stripping filter for ITK. Insight J. 1–7 (2012). http://hdl.handle.net/10380/3353

  2. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer, Heidelberg (2013)

    Book  Google Scholar 

  3. von Deimling, A.: Gliomas. Recent Results in Cancer Research, vol. 171. Springer, Heidelberg (2009). http://link.springer.com/10.1007/978-3-540-31206-2

    Book  Google Scholar 

  4. Ellingson, B.M., Bendszus, M., Boxerman, J., Barboriak, D., Erickson, B.J., Smits, M., Nelson, S.J., Gerstner, E., Alexander, B., Goldmacher, G., Wick, W., Vogelbaum, M., Weller, M., Galanis, E., Kalpathy-Cramer, J., Shankar, L., Jacobs, P., Pope, W.B., Yang, D., Chung, C., Knopp, M.V., Cha, S., Van Den Bent, M.J., Chang, S., Al Yung, W.K., Cloughesy, T.F., Wen, P.Y., Gilbert, M.R., Whitney, A., Sandak, D., Musella, A., Haynes, C., Wallace, M., Arons, D.F., Kingston, A.: Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol. 17(9), 1188–1198 (2015)

    Google Scholar 

  5. Kohli, P., Ladický, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vis. 82(3), 302–324 (2009)

    Article  Google Scholar 

  6. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007)

    Article  Google Scholar 

  7. Kraehenbuehl, P., Koltun, V.: Parameter learning and convergent inference for dense random fields. In: Proceedings of the 30th International Conference on Machine Learning (ICML 2013), vol. 28, pp. 513–521 (2013). http://machinelearning.wustl.edu/mlpapers/papers/icml2013_kraehenbuehl13

  8. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFS with Gaussian edge potentials. In: NIPS 2011, pp. 109–117 (2011). http://arxiv.org/abs/1210.5644

  9. Ladick, L.U., Russell, C., Kohli, P., Torr, P.H.S.: Associative hierarchical CRFs for object class image segmentation. In: ICCV (2009). http://cms.brookes.ac.uk/research/visiongroup/, http://research.microsoft.com/en-us/um/people/pkohli/

  10. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: Appearance-and context-sensitive features for brain tumor segmentation. In: MICCAI BRATS Challenge (2014)

    Google Scholar 

  11. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Louis Collins, D., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, G., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., António Mariz, J., Meier, R., Pereira, S., Precup, D., Price, S.J., Riklin Raviv, T., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Hye Ye, D., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K., Golland, P., Lashkari, D., Guo, X., Schwartz, L., Zhao, B.: The multimodal brain tumor image segmentation benchmark (BRATS). TMI 34, 1993–2024 (2015). http://www.ieee.org/publications_standards/publications/rights/index.html

    Google Scholar 

  12. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  13. Orlando, J., Prokofyeva, E., Blaschko, M.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 1 (2016). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7420682

  14. Pantofaru, C., Schmid, C., Hebert, M.: Object recognition by integrating multiple image segmentations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 481–494. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_36

    Chapter  Google Scholar 

  15. Pope, W.B., Sayre, J., Perlina, A., Villablanca, J.P., Mischel, P.S., Cloughesy, T.F.: MR imaging correlates of survival in patients with high-grade gliomas. Am. J. Neuroradiol. 26(10), 2466–2474 (2005)

    Google Scholar 

  16. Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R.K., Slotboom, J., Reyes, M., Wiest, R.: Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE 9(5), e96873 (2014)

    Article  Google Scholar 

  17. R Core Team: R: A language and environment for statistical computing (2013). http://www.r-project.org/

  18. Rios Velazquez, E., Meier, R., Dunn, W., Alexander, B., Wiest, R., Bauer, S., Gutman, D., Reyes, M., Aerts, H.: Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci. Rep. 42(6), 3589 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26128818

  19. Shelhamer, E., Jegelka, S., Darrell, T.: Communal cuts : sharing cuts across images. In: NIPS Workshop on Discrete and Combinatorial Problems in Machine Learning (DISCML), pp. 1–6 (2014)

    Google Scholar 

  20. Tustison, N.J., Avants, B.B.: Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Google Scholar 

  21. Wang, C., Komodakis, N., Paragios, N.: Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst. 117(11), 1610–1627 (2013). http://dx.doi.org/10.1016/j.cviu.2013.07.004

  22. Yip, S.S.F., Aerts, H.J.W.L.: Applications and limitations of radiomics. Phys. Med. Biol. 61(13), R150–R166 (2016). http://stacks.iop.org/0031-9155/61/i=13/a=R150?key=crossref.134478778713970aff90f16abe110608/, http://www.ncbi.nlm.nih.gov/pubmed/27269645/, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4927328

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement Nº600841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Meier, R., Knecht, U., Wiest, R., Reyes, M. (2016). CRF-Based Brain Tumor Segmentation: Alleviating the Shrinking Bias. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55524-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55523-2

  • Online ISBN: 978-3-319-55524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics