Abstract
It is easy to determine if a given code \(\mathcal {C}\) is a subcode of another known code \(\mathcal {D}\). For most of occurrences, it is easy to determine if two codes \(\mathcal {C}\) and \(\mathcal {D}\) are equivalent by permutation. In this paper, we show that determining if a code \(\mathcal {C}\) is equivalent to a subcode of \(\mathcal {D}\) is a NP-complete problem. We give also some arguments to show why this problem seems much harder to solve in practice than the Equivalence Punctured Code problem or the Punctured Code problem proposed by Wieschebrink [21]. For one application of this problem we propose an improvement of the three-pass identification scheme of Girault and discuss on its performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barg, A.: Some new NP-complete coding problems. Problemy Peredachi Informatsii 30(3), 23–28 (1994). English translation in Probl. Inform. Trans. 30, 209–214, July–September 1994
Berger, T.P.: New perspectives for code-based public key cryptography. In: Codes and Lattices in Cryptography, CLC 2006, Darmstadt (2006)
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02384-2_6
Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35, 63–79 (2005)
Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)
Cayrel, P.L., Diagne, M.K., Gueye, C.T.: NP-completeness of the Coset weight problem for Quasi-dyadic codes. In: International Conference on Coding theory and Cryptography ICCC 2015, Alger, Algeria (2015)
Cayrel, P.-L., Véron, P., Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19574-7_12
Garey, E., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)
Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990). doi:10.1007/BFb0030367
Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In: ISIT (2007)
Harari, S.: A new authentication algorithm. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989). doi:10.1007/BFb0019849
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Lab. DSN Progress Report, Technical report (1978)
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7_24
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor. 15(2), 159–166 (1986)
Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604 (1997)
Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theor. 46(4), 1193–1203 (2000)
Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Proceeding of Post-Quantum Cryptography, 5th International Workshop PQcrupto 2013, Limoges, France (2013)
Sidel’nikov, V.M., Shestakov, S.O.: On cryptosystems based on generalized Reed-Solomon codes. Discrete Math. 4(3), 57–63 (1992)
Sendrier, N., Simos, D.E.: How easy is code equivalence over \(\mathbb{F}_q\)? In: Proceedings of the 8th International Workshop on Coding and Cryptography, WCC 2013 (2013, to appear). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf. Preprint (2012)
Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theor. 43(6), 1757–1766 (1997)
Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proceedings of IEEE ISIT 2006, Seattle, USA, pp. 1733–1737 (2006)
Wieschebrink, C.: An attack on a modified niederreiter encryption scheme. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 14–26. Springer, Heidelberg (2006). doi:10.1007/11745853_2
Stern, J.: An alternative to the Fiat-Shamir protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 173–180. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4_19
Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)
Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_2
Acknowlegment
This work was carried out with financial support of CEA-MITIC for CBC project and financial support of the government of Senegal’s Ministry of Hight Education and Research for ISPQ project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Berger, T.P., Gueye, C.T., Klamti, J.B. (2017). A NP-Complete Problem in Coding Theory with Application to Code Based Cryptography. In: El Hajji, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2017. Lecture Notes in Computer Science(), vol 10194. Springer, Cham. https://doi.org/10.1007/978-3-319-55589-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-55589-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55588-1
Online ISBN: 978-3-319-55589-8
eBook Packages: Computer ScienceComputer Science (R0)