Skip to main content

Generalization of BJMM-ISD Using May-Ozerov Nearest Neighbor Algorithm over an Arbitrary Finite Field \(\mathbb {F}_q\)

  • Conference paper
  • First Online:
Codes, Cryptology and Information Security (C2SI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10194))

Abstract

The security of McEliece cryptosystem heavily relies on the hardness of decoding a random linear code. The best known generic decoding algorithms are derived from the Information-Set Decoding (ISD) algorithm. The ISD algorithm was proposed in 1962 by Prange and improved in 1989 by Stern and later in 1991 by Dumer. Since then, there have been numerous works improving and generalizing the ISD algorithm: Peters in 2009, May, Meurer and Thomae in 2011, Becker, Joux, May and Meurer in 2012, May and Ozerov in 2015, and Hirose in 2016. Among all these improvement and generalization only those ofPeters and Hirose are over \(\mathbb {F}_q\) with q an arbitrary prime power. In Hirose’s paper, he describes the May-Ozerov nearest-neighbor algorithm generalized to work for vectors over the finite field \(\mathbb {F}_q\) with arbitrary prime power q. He also applies the generalized algorithm to the decoding problem of random linear codes over \(\mathbb {F}_q\). And he observed by a numerical analysis of asymptotic time complexity that the May-Ozerov nearest-neighbor algorithm may not contribute to the performance improvement of Stern’s ISD algorithm over \(\mathbb {F}_q\) with \(q \ge 3\). In this paper, we will extend the Becker, Joux, May, and Meurer’s ISD using the May-Ozerov algorithm for Nearest-Neighbor problem over \(\mathbb {F}_q\) with q an arbitrary prime power. We analyze the impact of May-Ozerov algorithm for Nearest-Neighbor Problem over \(\mathbb {F}_q\) on the Becker, Joux, May and Meurer’s ISD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andoni, A., Indyk, P., Nguyen, H.L., Razenshteyn, I.: Beyond locality-sensitive hashing. In: SODA, pp. 1018–1028 (2014)

    Google Scholar 

  2. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  3. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, A., Joux, A., May, A., Meurer A.: Decoding random binary linear codes in \(2n, 20\): how \(1+1=0\) improves information set decoding. In: Eurocrypt 2012 (2012)

    Google Scholar 

  5. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  6. Chabot, C., Legeay, M.: Using permutation group for decoding. In: Proceedings of Algebraic and Combinatorial Coding Theory 2010, pp. 86–92 (2010)

    Google Scholar 

  7. Coffey, J.T., Goodman, R.M.: The complexity of Information-Set Decoding (ISD). IEEE Trans. Inf. Theor. 36(5), 1031–1037 (1990)

    Article  MATH  Google Scholar 

  8. Cohen, G., Wolfmann, J. (eds.): Coding Theory and Applications. LNCS, vol. 388. Springer, Heidelberg (1989)

    Google Scholar 

  9. Couvreur, A., Otmani, A., Tillich, J.-P.: Polynomial time attack on wild McEliece over quadratic extensions. Cryptology ePrint Archive 2014/112 (2014)

    Google Scholar 

  10. Dubiner, M.: Bucketing coding and information theory for the statistical high-dimensional nearest-neighbor problem. IEEE Trans. Inf. Theor. 56(8), 4166–4179 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings 5th Joint Soviet-Swedish International Workshop Information Theory, Moscow, pp. 50–52 (1991)

    Google Scholar 

  12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Faugére, J.-C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. Cryptology ePrint Archive: Report 2014/210 (2014)

    Google Scholar 

  14. Faugére, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Folding alternant and Goppa codes with non-nrivial automorphism groups. arXiv:1405.5101v1 [cs.IT], 20 May 2014

  15. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Johansson, T., Löndahl, C.: An Improvement to Stern’s Algorithm

    Google Scholar 

  17. Heyse, S.: Implementation of McEliece based on quasi-dyadic goppa codes for embedded devices. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 143–162. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_10

    Chapter  Google Scholar 

  18. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–91, March 2005

    Google Scholar 

  19. Hirose, S.: May-Ozerov algorithm for nearest-neighbor problem over \(\mathbb{F}_q\) and its application to information set decoding. Cryptology ePrint Archive: Report 2016/237 (2016)

    Google Scholar 

  20. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of dimensionality. Theor. Comput. 8(1), 321–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Kobara, K.: Flexible quasi-dyadic code-based public-key encryption and signature. Cryptology ePrint Archive, Report 2009/635 (2009)

    Google Scholar 

  23. Legeay, M.: Permutation decoding: towards an approach using algebraic properties of the \(\sigma \)-subcode. In: Augot, D., Canteaut, A. (eds.) WCC 2011, pp. 193–202 (2011)

    Google Scholar 

  24. Legeay, M.: Utilisation du groupe de permutations d’un code correcteur pour améliorer l’éfficacité du décodage. Université de Rennes 1, Année (2012)

    Google Scholar 

  25. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). doi:10.1007/3-540-45961-8_25

    Google Scholar 

  26. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inf. Theor. 34, 1354–1359 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Misoczki, R., Tillich, J.P, Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: ISIT 2013, pp. 2069–2073 (2013)

    Google Scholar 

  29. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, pp. 114–116, January 1978

    Google Scholar 

  30. Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Monoidic codes in cryptography. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 179–199. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_6

    Chapter  Google Scholar 

  32. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_9

    Google Scholar 

  33. Meurer, A.: A coding-theoretic approach to cryptanalysis. Dissertation thesis, Universität Bochum Ruhr, Novenber 2012

    Google Scholar 

  34. Niebuhr, R., Persichetti, E., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for information set decoding over \(\mathbb{F}_q\) and on the effect of partial knowledge

    Google Scholar 

  35. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor. 15, 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  36. Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptology 6(2), 149–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_q\). Cryptology ePrint Archive 2009/589 (2009)

    Google Scholar 

  38. Prange, E.: The use of Information-Sets in decoding cyclic codes. IEEE Trans. IT–8, S5–S9 (1962)

    MathSciNet  Google Scholar 

  39. Repka, M., Zajac, P.: Overview of the McEliece cryptosystem and its security. Tatra Mountains Math. Publ. 60, 57–83 (2014). doi:10.2478/tmmp-2014-0025

    MathSciNet  MATH  Google Scholar 

  40. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). doi:10.1007/BFb0019850

    Chapter  Google Scholar 

  41. Umana, V.G., Leander, G.: Practical key recovery attacks on two McEliece variants. In: International Conference on Symbolic Computation and Cryptography SCC 2010, vol. 2010, p. 62 (2010)

    Google Scholar 

Download references

Acknowlegment

This work was carried out with financial support of CEA-MITIC for CBC project and financial support of the government of Senegal’s Ministry of Hight Education and Research for ISPQ project. The third author was supported in part by JSPS KAKENHI Grant Number JP16H02828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Belo Klamti .

Editor information

Editors and Affiliations

Appendices

Appendix

Nearest-Neighbor Algorithm over an Arbitrary Finite Field \(\mathbb {F}_q\)

We give in this section the May-Ozerov Nearest-Neighbor algorithm over \(\mathbb {F}_q\) proposed by Hirose in [19]

figure b

The complexity of May-Ozerov Nearest Neighbor algorithm is given by:

Theorem 2

[19]. Let q be a prime power. Let \(\gamma \), \(\beta \), \(\epsilon >0\) and \(\lambda \) be reals such that \(0<\gamma <\frac{1}{2}\), \(0<\beta <1\), \(\varepsilon >0\) and \(\lambda \le H_{q}(\beta )-\frac{1}{q}\sum \limits _{x\in \mathbb {F}_{q}}H_{q}(q \beta h_{x})\) with \(\sum \limits _{x\in \mathbb {F}_{q}}h_{x}=1\) and for each \(x\in \mathbb {F}_{q}\), \(\frac{\gamma }{q}< h_{x}<\frac{\gamma }{q} + \frac{1-\gamma }{q\beta }\).

Let \(y= (1-\gamma )\left( H_{q}(\beta ) -\frac{1}{q}\sum \limits _{x\in \mathbb {F}_{q}}H_{q}\left( \frac{qh_{x}-\gamma }{1-\gamma } \beta \right) \right) \). Then the MO-NN algorithm solves the \((m,\gamma , \lambda )NN\) problem over \(\mathbb {F}_{q}\) with overwhelming probability in time

$$\begin{aligned} \tilde{\mathcal {O}}\left( q^{(y+\varepsilon )m}\right) . \end{aligned}$$
figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gueye, C.T., Klamti, J.B., Hirose, S. (2017). Generalization of BJMM-ISD Using May-Ozerov Nearest Neighbor Algorithm over an Arbitrary Finite Field \(\mathbb {F}_q\) . In: El Hajji, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2017. Lecture Notes in Computer Science(), vol 10194. Springer, Cham. https://doi.org/10.1007/978-3-319-55589-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55589-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55588-1

  • Online ISBN: 978-3-319-55589-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics