Skip to main content

Chattering Free Sliding Mode Controller Design for a Quadrotor Unmanned Aerial Vehicle

  • Chapter
  • First Online:
Applications of Sliding Mode Control in Science and Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 709))

Abstract

In this paper, a nonlinear model for a Quadrotor Vertical Take-Off and Landing (VTOL) type of Unmanned Aerial Vehicles (UAVs) is firstly established for the attitude and position control. All aerodynamic forces and moments of the studied Quadrotor UAV are described within an inertial frame. Such a dynamical model is obtained using the Newton-Euler formalism. Secondly, an improved nonlinear Sliding Mode Control (SMC) approach is designed for this aircraft in order to stabilize its vertical flight dynamics, while avoiding the classical chattering problem. Since chattering phenomena is the most problematic issue in the sliding mode control applications, a Quasi Sliding Mode Control (QSMC) technique is used as a solution for the chattering avoidance in Quadrotor dynamics control. Demonstrative simulations are carried out in order to show the effectiveness of the proposed QSMC approach for the stabilization and tracking of various desired trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adr VG, Stoica AM, Whidborne JF (2012) Sliding mode control of a 4Y octorotor. UPB Sci Bull Ser D Mech Eng J 74(4):37–52

    Google Scholar 

  2. Ashrafiuon H, Scott Erwin R (2008) Sliding mode control of underactuated multibody systems and its application to shape change control. Int J Control 81(12):1849–1858

    Article  MathSciNet  MATH  Google Scholar 

  3. Austin R (2010) Unmanned aircraft systems: UAVs design, development and deployment. John Wiley & Sons, UK

    Book  Google Scholar 

  4. Azar AT, Zhu Q (eds) (2015) Advances and applications in sliding mode control systems. Springer, New York

    MATH  Google Scholar 

  5. Ben Ammar N, Bouallègue S, Haggège J (2016) Modeling and sliding mode control of a quadrotor unmanned aerial vehicle. In: Proceedings of the 3th international conference on automation, control engineering and computer science (ACECS 2016), Hammamet, Tunisia, pp 834–840

    Google Scholar 

  6. Besnard L, Shtessel YB, Landrum B (2012) Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J Franklin Inst 349:658–684

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouabdallah S, Noth A, Siegwart R (2004) PID versus LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS 2004), Sendai, Japan, pp 2451–2456

    Google Scholar 

  8. Bouabdallah S, Siegwart R (2005) Backstepping and sliding mode technique applied to an indoor micro quadrotor. In: Proceedings of the IEEE international conference on robotics and automation (ROBOT 2005), Barcelona, Spain, 2259–2264

    Google Scholar 

  9. Bouallègue S, Fessi R (2016) Rapid control prototyping and PIL co-simulation of a quadrotor UAV based on NI myRIO-1900 board. Int J Adv Comput Sci Appl 7(6):26–35

    Google Scholar 

  10. Bresciani T (2008) Modelling, identification and control of a quadrotor helicopter. Master thesis, department of automatic control, Lund University, ISSN 0280-5316, Sweden

    Google Scholar 

  11. Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. CRC Press Taylor and Francis, London

    MATH  Google Scholar 

  12. Fantoni I, Lozano R (2002) Nonlinear control for underactuated mechanical systems. Springer, London

    Book  MATH  Google Scholar 

  13. Guerrero J, Lozano R (eds) (2012) Flight formation control. Wiley-ISTE, UK

    MATH  Google Scholar 

  14. Islam S, Dias J, Seneviratne LD (2014) Adaptive tracking control for quadrotor unmanned flying vehicle. In: Proceedings of the international conference on advanced intelligent mechatronics (AIM 2014), Besançon, France, pp 441–445

    Google Scholar 

  15. Itkis U (1976) Control systems of variable structure. Wiley, Hoboken, New Jersey

    MATH  Google Scholar 

  16. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey

    MATH  Google Scholar 

  17. Khatoon S, Gupta D, Das LK (2014) PID and LQR control for a quadrotor: modeling and simulation. In: Proceedings of the 2014 international conference on advances in computing, communications and informatics (ICACCI 2014), New Delhi, pp 796–802

    Google Scholar 

  18. Lakhekar GV, Waghmare LM, Vaidyanathan S (2016) Diving autopilot design for underwater vehicles using an adaptive neuro-fuzzy sliding mode controller. Stud Comput Intell 635:477–503

    Google Scholar 

  19. Lozano R (ed) (2013) Unmanned aerial vehicles: embedded control. ISTE and Wiley, London UK and Hoboken USA

    Google Scholar 

  20. Nonami K, Kendoul F, Suzuki S, Wang W, Nakazawa D (2010) Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer, New York

    Book  Google Scholar 

  21. O’Toole MD, Bouazza-Marouf K, Kerr D (2010) Chatter suppression in sliding mode control: strategies and tuning methods. In: Parenti-Castelli V, Schiehlen W (eds) ROMANSY 18 robot design, dynamics and control. Springer, New York

    Google Scholar 

  22. Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  23. Utkin VI (1992) Sliding mode in control and optimization. Springer, Heidelberg

    Book  MATH  Google Scholar 

  24. Vaidyanathan S (2015) Sliding mode control of Rucklidge chaotic system for nonlinear double convection. Int J ChemTech Res 8(8):25–35

    MathSciNet  Google Scholar 

  25. Vaidyanathan S (2015) Integral sliding mode control design for the global chaos synchronization of identical novel chemical chaotic reactor systems. Int J ChemTech Res 8(11):684–699

    MathSciNet  Google Scholar 

  26. Vaidyanathan S (2015) Sliding controller design for the global chaos synchronization of enzymes-substrates systems. Int J PharmTech Res 8(7):89–99

    MathSciNet  Google Scholar 

  27. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    MathSciNet  Google Scholar 

  28. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Model Ident Control 23(1):92–100

    Article  Google Scholar 

  29. Young KD, Utkin VI, Özgüner U (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342

    Article  Google Scholar 

  30. Zheng E-H, Xiong J-J, Luo J-L (2014) Second order sliding mode control for a quadrotor UAV. ISA Trans 53(4):1350–1356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Bouallègue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ammar, N.B., Bouallègue, S., Haggège, J., Vaidyanathan, S. (2017). Chattering Free Sliding Mode Controller Design for a Quadrotor Unmanned Aerial Vehicle. In: Vaidyanathan, S., Lien, CH. (eds) Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, vol 709. Springer, Cham. https://doi.org/10.1007/978-3-319-55598-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55598-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55597-3

  • Online ISBN: 978-3-319-55598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics