Abstract
Networks are continuously growing in complexity, which creates challenges for determining their most important characteristics. While analytical bounds are often too conservative, the computational effort of algorithmic approaches does not scale well with network size. This work uses Cartesian Genetic Programming for symbolic regression to evolve mathematical equations that relate network properties directly to the eigenvalues of network adjacency and Laplacian matrices. In particular, we show that these eigenvalues are powerful features to evolve approximate equations for the network diameter and the isoperimetric number, which are hard to compute algorithmically. Our experiments indicate a good performance of the evolved equations for several real-world networks and we demonstrate how the generalization power can be influenced by the selection of training networks and feature sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford University, Stanford, CA (1998)
Van Mieghem, P.: Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. arXiv preprint arXiv:1401.4580 (2014)
Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)
Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Press, Boulder (2014)
Schmidt, M., Lipson, H.: Solving iterated functions using genetic programming. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2149–2154. ACM (2009)
Menezes, T., Roth, C.: Symbolic regression of generative network models. Sci. Rep. 4 (2014). Article No. 6284, doi:10.1038/srep06284
McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX, pp. 235–260. Springer, New York (2011)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)
McConaghy, T., Eeckelaert, T., Gielen, G.: CAFFEINE: template-free symbolic model generation of analog circuits via canonical form functions and genetic programming. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol. 2, pp. 1082–1087. IEEE Computer Society (2005)
Augusto, D.A., Barbosa, H.J.: Symbolic regression via genetic programming. In: 6th Brazilian Symposium on Neural Networks, pp. 173–178. IEEE (2000)
Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
Harding, S., Miller, J.F.: Evolution of robot controller using cartesian genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 62–73. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31989-4_6
Khan, M.M., Khan, G.M.: A novel neuroevolutionary algorithm: cartesian genetic programming evolved artificial neural network (CGPANN). In: Proceedings of the 8th International Conference on Frontiers of Information Technology, p. 48. ACM (2010)
Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type cartesian genetic programming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 751–758. ACM (2012)
Miller, J.F.: Evolution of digital filters using a gate array model. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds.) EvoWorkshops 1999. LNCS, vol. 1596, pp. 17–30. Springer, Heidelberg (1999). doi:10.1007/10704703_2
Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE Trans. Evol. Comput. 19(3), 432–444 (2015)
Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 139–150. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16501-1_12
Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)
Turner, A.J., Miller, J.F.: Cartesian genetic programming: why no bloat? In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 222–233. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44303-3_19
Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)
Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)
Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)
Alon, N., Milman, V.D.: \(\lambda \)1, isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)
Mohar, B.: Eigenvalues, diameter, and mean distance in graphs. Graphs Comb. 7(1), 53–64 (1991)
Chung, F.R., Faber, V., Manteuffel, T.A.: An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian. SIAM J. Discret. Math. 7(3), 443–457 (1994)
Van Dam, E.R., Haemers, W.H.: Eigenvalues and the diameter of graphs. Linear Multilinear Algebra 39(1–2), 33–44 (1995)
Mohar, B.: Isoperimetric numbers of graphs. J. Comb. Theory Ser. B 47(3), 274–291 (1989)
Bollobás, B.: Random Graphs. Springer, New York (1998)
Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolutionary mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)
Rossi, R.A., Ahmed, N.K.: An interactive data repository with visual analytics. SIGKDD Explor. 17(2), 37–41 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Märtens, M., Kuipers, F., Van Mieghem, P. (2017). Symbolic Regression on Network Properties. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-55696-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55695-6
Online ISBN: 978-3-319-55696-3
eBook Packages: Computer ScienceComputer Science (R0)