Skip to main content

Efficient Processing of Growing Temporal Graphs

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10178))

Included in the following conference series:

Abstract

Temporal graphs are useful in modeling real-world networks. For example, in a phone call network, people may communicate with each other in multiple time periods, which can be modeled as multiple temporal edges. However, the size of real-world temporal graphs keeps increasing rapidly (e.g., considering the number of phone calls recorded each day), which makes it difficult to efficiently store and analyze the complete temporal graphs. We propose a new model, called equal-weight damped time window model, to efficiently manage temporal graphs. In this model, each time window is assigned a unified weight. This model is flexible as it allows users to control the tradeoff between the required storage space and the information loss. It also supports efficient maintenance of the windows as new data come in. We then discuss applications that use the model for analyzing temporal graphs. Our experiments demonstrated that we can handle massive temporal graphs efficiently with limited space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blondel, V.D., Esch, M., Chan, C., Clérot, F., Deville, P., Huens, E., Morlot, F., Smoreda, Z., Ziemlicki, C.: Data for development: the D4D challenge on mobile phone data. CoRR, abs/1210.0137 (2012)

    Google Scholar 

  2. Brisaboa, N.R., Caro, D., Fariña, A., Rodríguez, M.A.: A compressed suffix-array strategy for temporal-graph indexing. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 77–88. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11918-2_8

    Google Scholar 

  3. Caro, D., Rodríguez, M.A., Brisaboa, N.R.: Data structures for temporal graphs based on compact sequence representations. Inf. Syst. 51, 1–26 (2015)

    Article  Google Scholar 

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  5. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-dimensional regression analysis of time-series data streams. In: VLDB, pp. 323–334 (2002)

    Google Scholar 

  6. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardo, G., Brisaboa, N.R., Caro, D., Rodríguez, M.A.: Compact data structures for temporal graphs. In: DCC, p. 477 (2013)

    Google Scholar 

  8. Holme, P., Saramäki, J.: Temporal networks. CoRR, abs/1108.1780 (2011)

    Google Scholar 

  9. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kossinets, G., Kleinberg, J.M., Watts, D.J.: The structure of information pathways in a social communication network. In: KDD, pp. 435–443 (2008)

    Google Scholar 

  11. Lai, J., Wang, C., Yu, P.S.: Dynamic community detection in weighted graph streams. In: SDM, pp. 151–161 (2013)

    Google Scholar 

  12. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable information: models and algorithms. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74247-0_3

    Chapter  Google Scholar 

  13. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84, 016105 (2011)

    Article  Google Scholar 

  14. Perng, C., Wang, H., Zhang, S.R., Jr., D.S.P.: Landmarks: a new model for similarity-based pattern querying in time series databases. In: ICDE, pp. 33–42 (2000)

    Google Scholar 

  15. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: WOSN, pp. 31–36 (2009)

    Google Scholar 

  16. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. Comput. Commun. Rev. 40(1), 118–124 (2010)

    Article  Google Scholar 

  17. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81(5), 055101 (2010)

    Article  Google Scholar 

  18. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal graphs. PVLDB 7(9), 721–732 (2014)

    Google Scholar 

  20. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942 (2016)

    Article  Google Scholar 

  21. Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition in large temporal graphs. In: IEEE International Conference on Big Data, pp. 649–658 (2015)

    Google Scholar 

  22. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-based path queries in temporal graphs. In: ICDE, pp. 145–156 (2016)

    Google Scholar 

  23. Wu, H., Zhao, Y., Cheng, J., Yan, D.: Efficient processing of growing temporal graphs (2016). http://www.cse.cuhk.edu.hk/%7ejcheng/papers/tm_tr.pdf

  24. Xie, W., Tian, Y., Sismanis, Y., Balmin, A., Haas, P.J.: Dynamic interaction graphs with probabilistic edge decay. In: ICDE, pp. 1143–1154 (2015)

    Google Scholar 

  25. Xuan, B.-M.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for distributed computation on real-world graphs. PVLDB 7(14), 1981–1992 (2014)

    Google Scholar 

  27. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and load balancing in distributed graph computation. In: WWW, pp. 1307–1317 (2015)

    Google Scholar 

  28. Yan, D., Cheng, J., Özsu, M.T., Yang, F., Lu, Y., Lui, J.C.S., Zhang, Q., Ng, W.: A general-purpose query-centric framework for querying big graphs. PVLDB 9(7), 564–575 (2016)

    Google Scholar 

  29. Yang, F., Li, J., Cheng, J.: Husky: towards a more efficient and expressive distributed computing framework. PVLDB 9(5), 420–431 (2016)

    Google Scholar 

  30. Yang, Y., Yan, D., Wu, H., Cheng, J., Zhou, S., Lui, J.C.S.: Diversified temporal subgraph pattern mining. In: SIGKDD, pp. 1965–1974 (2016)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable comments. The authors are supported by the Hong Kong GRF 2150851 and 2150895, ITF 6904079, MSRA grant 6904224, and CUHK Grants 3132964 and 3132821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, H., Zhao, Y., Cheng, J., Yan, D. (2017). Efficient Processing of Growing Temporal Graphs. In: Candan, S., Chen, L., Pedersen, T., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10178. Springer, Cham. https://doi.org/10.1007/978-3-319-55699-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55699-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55698-7

  • Online ISBN: 978-3-319-55699-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics