Skip to main content

RDF Data Assessment Based on Metrics and Improved PageRank Algorithm

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10179))

Included in the following conference series:

  • 1648 Accesses

Abstract

With the development of the Internet, lots of data appears on the Internet. But these data can’t be efficiently used owing to the lack of validity and believability, so data trust assessment has become a hot topic in the current research in the field of web. Considering the close relationship between the data credibility and its provenance, this paper proposes its own quantization rules with the existing trust evaluation model. And because of the similarities between web pages and RDF data, the improved PageRank algorithm is put forwarded in order to filter invalid data set. At last, the DataHub dataset is used to carry out a comprehensive experiment. The experimental results which carried out with DataHub set show that the proposed quantization rule and the improved PageRank algorithm can greatly improve the sorting result of the data set and reduce the effect of invalid data set on the sorting result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gogulakrishnan, R., Thirumalaivasan, K., Nithiya, S., et al.: An investigation on semantic Web. Int. J. 2(3) (2013)

    Google Scholar 

  2. Tomaszuk, D., Pąk, K., Rybiński, H.: Trust in RDF graphs. In: Morzy, T., Härder, T., Wrembel, R. (eds.) Advances in Databases and Information Systems, pp. 273–283. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Chiarcos, C., Mccrae, J., Osenova, P., et al.: Introduction and overview. In: 3rd Workshop on Linked Data in Linguistics: Multilingual Knowledge Resources and Natural Language Processing (2014)

    Google Scholar 

  4. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to linked data and its lifecycle on the web. In: Rudolph, S., Gottlob, G., Horrocks, I., Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 1–90. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39784-4_1

    Chapter  Google Scholar 

  5. Jacobi, I., Kagal, L., Khandelwal, A.: Rule-based trust assessment on the semantic web. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011. LNCS, vol. 6826, pp. 227–241. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22546-8_18

    Chapter  Google Scholar 

  6. Hartig, O., Zhao, J.: Publishing and consuming provenance metadata on the web of linked data. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 78–90. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17819-1_10

    Chapter  Google Scholar 

  7. Xiaofei, C., Yitong, W., Xiaojun, F.: An improvement of PageRank algorithm based on page quality. J. Comput. Res. Dev. 46(suppl.), 381–387 (2009)

    Google Scholar 

  8. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11964-9_16

    Google Scholar 

  9. Zaveri, A., Rula, A., Maurino, A., et al.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2015)

    Article  Google Scholar 

  10. Pattanaphanchai, J.: DC proposal: evaluating trustworthiness of web content using semantic web technologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 325–332. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25093-4_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wei, K., Tian, P., Gu, J., Huang, L. (2017). RDF Data Assessment Based on Metrics and Improved PageRank Algorithm. In: Bao, Z., Trajcevski, G., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10179. Springer, Cham. https://doi.org/10.1007/978-3-319-55705-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55705-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55704-5

  • Online ISBN: 978-3-319-55705-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics