Abstract
We give an efficient exhaustive search algorithm to enumerate \(6\times 6\) bijective S-boxes with the best known nonlinearity 24 in a class of S-boxes that are symmetric under the permutation \(\tau (x) = (x_0, x_2, x_3, x_4,\) \(x_5, x_1)\), where \(x = (x_0,\) \(x_1, \ldots , x_5) \in \mathbb {F}_{2}^6\). Since any S-box \(S: \mathbb {F}_{2}^6\rightarrow \mathbb {F}_{2}^6\) in this class has the property that \(S(\tau (x))=\tau (S(x))\) for all x, it can be considered as a construction obtained by the concatenation of \(5\times 5\) rotation-symmetric S-boxes (RSSBs). The size of the search space, i.e., the number of S-boxes belonging to the class, is \(2^{61.28}\). By performing our algorithm, we find that there exist \(2^{37.56}\) S-boxes with nonlinearity 24 and among them the number of differentially 4-uniform ones is \(2^{33.99}\), which indicates that the concatenation method provides a rich class in terms of high nonlinearity and low differential uniformity. Moreover, we classify those S-boxes achieving the best possible trade-off between nonlinearity and differential uniformity within the class with respect to absolute indicator, algebraic degree, and transparency order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)
Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010)
Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012)
Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six. In: The 9th Conference on Finite Fields and Applications - Fq9, Contemporary Mathematics, vol. 518, pp. 33–42, AMS USA (2010)
Carlet, C.: Vectorial Boolean functions for cryptography. Chapter of the Monography In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–469. Cambridge University Press (2010)
Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff, E.: Redefining the transparency order. In: Workshop on Coding and Cryptography (WCC), Paris, France (2015). http://eprint.iacr.org/2014/367.pdf
Dobbertin, H.: Almost perfect nonlinear power functions on GF(2\(^{n}\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999)
Evci, M.A., Kavut, S.: DPA resilience of rotation-symmetric S-boxes. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 146–157. Springer, Cham (2014). doi:10.1007/978-3-319-09843-2_12
Fuller, J., Millan, W.: Linear redundancy in S-Boxes. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 74–86. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39887-5_7
Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)
Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. Control 18, 369–394 (1971)
Kavut, S., Yücel, M.D.: 9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010). Elsevier
Kavut, S.: Results on rotation-symmetric S-boxes. Inf. Sci. 201, 93–113 (2012)
Kavut, S.: DPA resistivity of small size S-boxes. In: Proceedings of the 3rd International Symposium on Digital Forensics and Security, ISDFS 2015, pp. 64–69 (2015)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25
Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Symposium on Communication Coding and Cryptography, in Honor of J.L. Massey on the Occasion of his 60’th Birthday. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 27–233. Springer, Heidelberg (1994)
Li, Y., Wang, M., Yu, Y.: Constructing differentially 4-uniform permutations over \(GF(2^{2k})\) from the inverse function revisited (2013). http://eprint.iacr.org/2013/731
Li, Y., Wang, M.: Constructing differentially 4-uniform permutations over \(GF(2^{2m})\) from quadratic APN permutations over \(GF(2^{2m+1})\). Des. Codes Cryptogr. 72(2), 249–264 (2014)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_33
Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained search for a class of good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics Secur. 8(12), 2154–2163 (2013)
Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and implementation of rotation symmetric S-boxes with high nonlinearity and high DPA resiliency. In: IEEE International Symposium on Hardware-Oriented Security and Trust - HOST, pp. 87–92 (2013)
Mazumdar, B., Mukhopadhyay, D.: Construction of RSSBs with high nonlinearity and improved DPA resistivity from balanced RSBFs. IEEE Trans. Comput. (2016). doi:10.1109/TC.2016.2569410
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_6
Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, Ł., Golub, M.: On using genetic algorithms for intrinsic side-channel resistance: the case of AES S-box. In: The First Workshop on Cryptography and Security in Computing Systems, CS2 2014, pp. 13–18. ACM, New York (2014)
Picek, S., Ege, B., Papagiannopoulos, K., Batina, L., Jakobović, D.: Optimality and beyond: the case of \(4\times 4\) S-boxes. In: IEEE International Symposium on Hardware-Oriented Security and Trust - HOST, pp. 80–83 (2014)
Prouff, E.: DPA attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). doi:10.1007/11502760_29
Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/3-540-45418-7_17
Rijmen, V., Barreto, P.S.L.M., Filho, D.L.G.: Rotation symmetry in algebraically generated cryptographic substitution tables. Inf. Process. Lett. 106(6), 246–250 (2008)
Stănică, P., Maitra, S.: Rotation symmetric boolean functions \(-\) count and cryptographic properties. Discrete Appl. Math. 156(10), 1567–1580 (2008)
Yu, Y., Wang, M., Li, Y.: Constructing differential 4-uniform permutations from know ones (2011). http://eprint.iacr.org/2011/047)
Acknowledgement
This work is a part of a project supported financially by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant 114E486.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kavut, S., Baloğlu, S. (2017). Classification of \(6\times 6\) S-boxes Obtained by Concatenation of RSSBs. In: Bogdanov, A. (eds) Lightweight Cryptography for Security and Privacy. LightSec 2016. Lecture Notes in Computer Science(), vol 10098. Springer, Cham. https://doi.org/10.1007/978-3-319-55714-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-55714-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55713-7
Online ISBN: 978-3-319-55714-4
eBook Packages: Computer ScienceComputer Science (R0)