Skip to main content

Predicting Expressive Bow Controls for Violin and Viola

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

Abstract

Though computational systems can simulate notes on a staff of sheet music, capturing the artistic liberties professional musicians take to communicate their interpretation of those notes is a much more difficult task. In this paper, we demonstrate that machine learning methods can be used to learn models of expressivity, focusing on bow articulation for violin and viola. First we describe a new data set of annotated sheet music with information about specific aspects of bow control. We then present experiments for building and testing predictive models for these bow controls, as well as analysis that includes both general metrics and manual examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The percentages of “off the string” notes in Wieniawski, Sibelius, and Bach No. 2 are 0, 2, and 3, respectively. As a result, learned models only predicted “on the string.”

References

  1. Woody, R.H.: Learning expressivity in music performance: An exploratory study. Res. Stud. Music Educ. 14(1), 14–23 (2000)

    Article  Google Scholar 

  2. Randel, D.M. (ed.): The Harvard Dictionary of Music, 4th edn. The Belknap Press of Harvard University Press, Cambridge, London (2003)

    Google Scholar 

  3. Thippur, A., Askenfelt, A., Kjellström, H.: Probabilistic modeling of bowing gestures for gesture-based violin sound synthesis. In: Proceedings of Stockholm Music Acoustics Conference 2013, Stockholm, Sweden (2013)

    Google Scholar 

  4. Donington, R.: String Playing in Baroque Music. Faber Music Ltd., London (1977)

    Google Scholar 

  5. Cremer, L.: The Physics of the Violin. MIT Press, Cambridge (1983). translated by Allen, J.S

    Google Scholar 

  6. Schelleng, J.C.: The bowed string and the player. J. Acoust. Soc. Am. 53(1), 26–41 (1973)

    Article  Google Scholar 

  7. Juslin, P.N.: Five facets of musical expression: A psychologist’s perspective on music performance. Psychol. Music 31(3), 273–302 (2003)

    Article  Google Scholar 

  8. Marchini, M., Ramírez, R., Papiotis, P., Maestre, E.: The sense of ensemble: a machine learning approach to expressive performance modeling in string quartets. J. New Music Res. 43(3), 303–317 (2014)

    Article  Google Scholar 

  9. Neocleous, A., Ramírez, R., Pérez, A., Maestre, E.: Modeling emotions in violin audio recordings. In: ACM Workshop on Music and Machine Learning (ACM-MML), Firenze, Italy, pp. 17–20 (2010)

    Google Scholar 

  10. Percival, G., Bailey, N., Tzanetakis, G.: Physical modeling meets machine learning: Teaching bow control to a virtual violinist. In: Sound and Music Conference, Padova, Italy, July 2011

    Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  12. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  13. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  14. Demoucron, M.: On the Control of Virtual Violins: Physical Modelling and Control of Bowed String Instruments. Ph.D. thesis, KTH, Sweden (2009)

    Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  17. Alpaydin, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lauren Jane Yu or Andrea Pohoreckyj Danyluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, L.J., Danyluk, A.P. (2017). Predicting Expressive Bow Controls for Violin and Viola. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics