Skip to main content

Preference Integration in Context-Aware Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10177))

Included in the following conference series:

Abstract

In Recommender Systems, recommendation tasks are usually implemented by preference mining. Most existing methods in context-aware recommendation focus on learning user interests from all the records to implement preference mining. However, some records contribute to recommendations, whereas some others may reduce the performances. To address these limitations, we propose a division learning strategy to divide the original records into several groups based on regression tree techniques. Then, a two-layer preference mining process is carried out to produce group and local preferences. Finally, the two preferences are integrated by the preference integration (Prin) approach to give recommendations. The experimental results demonstrated that our model outperformed other state-of-the-art methods, which illustrated the importance of targeted modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://movielens.org/.

  2. 2.

    http://webscope.sandbox.yahoo.com.

References

  1. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 301–304. ACM, Chicago, 23–27 October 2011. http://doi.acm.org/10.1145/2043932.2043988

  2. Chen, T., Li, H., Yang, Q., Yu, Y.: General functional matrix factorization using gradient boosting. In: Proceedings of the 30th International Conference on Machine Learning (ICML 2013). JMLR Workshop and Conference Proceedings, vol. 28, pp. 436–444. Microtome Publishing, USA, 16–21 June 2013. http://jmlr.csail.mit.edu/proceedings/papers/v28/chen13e.pdf

  3. Cheng, C., Xia, F., Zhang, T., King, I., Lyu, M.R.: Gradient boosting factorization machines. In: Proceedings of the 8th ACM Conference on Recommender Systems, RecSys 2014, pp. 265–272. ACM, NY, 6–10 October 2014. http://doi.acm.org/10.1145/2645710.2645730

  4. Chowdhury, N., Cai, X., Luo, C.: BoostMF: boosted matrix factorisation for collaborative ranking. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-23525-7_1

    Chapter  Google Scholar 

  5. Larsen, D.R., Speckman, P.L.: Multivariate regression trees for analysis of abundance data. Biometrics 60(2), 543–549 (2004). http://iras.lib.whu.edu.cn:8080/rwt/JSTOR/http/P75YPLUKPN4G86SPN73GH/stable/3695785

    Article  MathSciNet  MATH  Google Scholar 

  6. Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. J. Animal Ecol. 77(4), 802–813 (2008). http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986

    Article  MathSciNet  MATH  Google Scholar 

  8. Hosseini, S., Li, L.T.: Point-of-interest recommendation using temporal orientations of users and locations. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9642, pp. 330–347. Springer, Cham (2016). doi:10.1007/978-3-319-32025-0_21

    Chapter  Google Scholar 

  9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE, Pisa, 15–19 December 2008

    Google Scholar 

  10. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM, NY (2008). http://doi.acm.org/10.1145/1401890.1401944

  11. Mohan, A., Chen, Z., Weinberger, K., Chapelle, O., Chang, Y., Liu, T.Y.: Websearch ranking with initialized gradient boosted regression trees. In: Proceedings of the Learning to Rank Challenge. JMLR Workshop and Conference Proceedings, vol. 14, pp. 77–89. Microtome Publishing, Brookline, 25 June 2011. http://www.jmlr.org/proceedings/papers/v14/mohan11a.html

  12. Pham, T.A.N., Li, X., Cong, G., Zhang, Z.: A general recommendation model for heterogeneous networks. IEEE Trans. Knowl. Data Eng. 28(12), 3140–3153 (2016)

    Article  Google Scholar 

  13. Rendle, S.: Factorization machines with libfm. ACM Trans. Intell. Syst. Technol. 3(3), 57:1–57:22 (2012). http://doi.acm.org/10.1145/2168752.2168771

    Article  Google Scholar 

  14. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington, 18–21 June 2009. http://dl.acm.org/citation.cfm?id=1795114.1795167

  15. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, vol. 1. Springer, US (2011). http://dx.doi.org/10.1007/978-0-387-85820-3_1

  16. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using markov chain monte carlo. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 880–887. ACM, NY, 5–9 July 2008. http://doi.acm.org/10.1145/1390156.1390267

  17. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis. IEEE Trans. Knowl. Data Eng. 22(2), 179–192 (2010)

    Article  Google Scholar 

  18. Zheng, L., Zhu, F., Mohammed, A.: Attribute and global boosting: a rating prediction method in context-aware recommendation. Comput. J. (2016). http://comjnl.oxfordjournals.org/content/early/2016/03/25/comjnl.bxw016.abstract

  19. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman & Hall/CRC, London (2012)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China with Grant No. 61272277. We acknowledge the editors and other anonymous reviewers for insightful suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, L., Zhu, F. (2017). Preference Integration in Context-Aware Recommendation. In: Candan, S., Chen, L., Pedersen, T., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10177. Springer, Cham. https://doi.org/10.1007/978-3-319-55753-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55753-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55752-6

  • Online ISBN: 978-3-319-55753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics