Skip to main content

Local Misfit Approximation in Memetic Solving of Ill-Posed Inverse Problems

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

The approximation of the objective function is a well known method of speeding up optimization process, especially if the objective evaluation is costly. This is the case of inverse parametric problems formulated as global optimization ones, in which we recover partial differential equation parameters by minimizing the misfit between its measured and simulated solutions. Typically, the approximation used to build the surrogate objective is rough but globally applicable in the whole admissible domain. The authors try to carry out a different task of detailed misfit approximation in the regions of low sensitivity (plateaus). The proposed complex method consists of independent \(C^0\) Lagrange approximation of the misfit and its gradient, based on the nodes obtained during the dedicated memetic process, and the subsequent projection of the obtained components (single or both) on the space of B-splines. The resulting approximation is globally \(C^1\), which allows us to use fast gradient-based local optimization methods. Another goal attained in this way is the estimation of the shape of plateau as an appropriate level set of the approximated objective. The proposed strategy can be applied for solving ill-conditioned real world inverse problems, e.g., appearing in the oil deposit investigation. We show the results of preliminary tests of the method on two benchmarks featuring convex and non-convex U-shaped plateaus.

This work is supported by National Science Centre, Poland grant no. 2015/17/B/ST6/01867.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tarantola, A.: Inverse Problem Theory. Mathematics and Its Applications. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    MATH  Google Scholar 

  2. Gajda-Zagórska, E., Schaefer, R., Smołka, M., Paszyński, M., Pardo, D.: A hybrid method for inversion of 3D DC logging measurements. Nat. Comput. 3, 355–374 (2014)

    MathSciNet  Google Scholar 

  3. Smołka, M., Gajda-Zagórska, E., Schaefer, R., Paszyński, M., Pardo, D.: A hybrid method for inversion of 3D AC logging measurements. Appl. Soft Comput. 36, 422–456 (2015)

    Article  Google Scholar 

  4. Tikhonov, A., Goncharsky, A., Stepanov, V., Yagola, A.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  5. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Natural Computing. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  6. Schaefer, R., Adamska, K., Telega, H.: Genetic clustering in continuous landscape exploration. Eng. Appl. Artif. Intell. (EAAI) 17, 407–416 (2004)

    Article  Google Scholar 

  7. Wolny, A., Schaefer, R.: Improving population-based algorithms with fitness deterioration. J. Telecommun. Inf. Technol. 4, 31–44 (2011)

    Google Scholar 

  8. Faliszewski, P., Sawicki, J., Schaefer, R., Smołka, M.: Multiwinner voting in genetic algorithms for solving Ill-posed global optimization problems. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 409–424. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_27

    Chapter  Google Scholar 

  9. Faliszewski, P., Sawicki, J., Schaefer, R., Smołka, M.: Multiwinner voting in genetic algorithms. IEEE Intell. Syst. (2016, accepted)

    Google Scholar 

  10. Grefenstette, J., Fitzpatrick, J.: Genetic search with approximate fitness evaluations. In: Proceedings of the International Conference on Genetic Algorithms and Their Applications, pp. 112–120 (1985)

    Google Scholar 

  11. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft. Comput. 9(1), 53–59 (2005)

    Google Scholar 

  12. Bhattachaya, M.: Evolutionary approaches to expensive optimization. Int. J. Adv. Res. Artif. Intell. 2(3), 3–12 (2013)

    Google Scholar 

  13. Brownlee, A., Woodward, J., Swan, J.: Metaheuristic design pattern: surrogate fitness functions. In: GECCO 2015 Proceedings, pp. 1261–1264. ACM Press, July 2015

    Google Scholar 

  14. Sawicki, J.: Identification of low sensitivity regions for inverse problems solutions. Master’s thesis, AGH University of Science and Technology, Faculty of Informatics, Electronics and Telecommunication, Kraków, Poland (2016)

    Google Scholar 

  15. Dierkes, T., Dorn, O., Natterer, F., Palamodov, V., Sielschott, H.: Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62(6), 2092–2113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smołka, M.: Differentiability of the objective in a class of coefficient inverse problems. Comput. Math. Appl. (submitted)

    Google Scholar 

  17. Smołka, M., Schaefer, R., Paszyński, M., Pardo, D., Álvarez-Aramberri, J.: An agent-oriented hierarchic strategy for solving inverse problems. Int. J. Appl. Math. Comput. Sci. 25(3), 483–498 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  19. Folland, G.B.: Real Analysis. Pure and Applied Mathematics, 2nd edn. Wiley, New York (1999). Modern Techniques and Their Applications, A Wiley-Interscience Publication

    Google Scholar 

  20. Gao, L., Calo, V.M.: Fast isogeometric solvers for explicit dynamics. Comput. Methods Appl. Mech. Eng. 274, 19–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Łoś, M., Woźniak, M., Paszyński, M., Hassaan, M.A., Lenharth, A., Pingali, K.: IGA-ADS: parallel explicit dynamics GALOIS solver using isogeometric \(L^2\) projections. Comput. Phys. Commun. (submitted)

    Google Scholar 

  22. Woźniak, M., Łoś, M., Paszyński, M., Dalcin, L., Calo, V.M.: Parallel three dimensional isogeometric \(l^2\)-projection solver. Comput. Inform. (accepted)

    Google Scholar 

  23. Łoś, M., Woźniak, M., Paszyński, M., Dalcin, L., Calo, V.M.: Dynamics with matrices possesing Kronecker product structure. Procedia Comput. Sci. 51, 286–295 (2015)

    Article  Google Scholar 

  24. Łoś, M., Paszyński, M., Kłusek, A., Dzwinel, W.: Application of fast isogeometric \(L^2\) projection solver for tumor growth simulations. Comput. Methods Appl. Mech. Eng. (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Łoś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Łoś, M., Schaefer, R., Sawicki, J., Smołka, M. (2017). Local Misfit Approximation in Memetic Solving of Ill-Posed Inverse Problems. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics