Skip to main content

The Two Regimes of Neutral Evolution: Localization on Hubs and Delocalized Diffusion

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

It has been argued that much of evolution takes place in the absence of fitness gradients. Such periods of evolution can be analysed by examining the mutational network formed by sequences of equal fitness, that is the neutral network. It has been demonstrated that, in large populations under a high mutation rate, the population distribution over the neutral network and average mutational robustness are given by the principle eigenvector and eigenvalue, respectively, of the network’s adjacency matrix. However, little progress has been made towards understanding the manner in which the topology of the neutral network influences the resulting population distribution and robustness. In this work, we build on recent results from spectral graph theory and utilize numerical methods to demonstrate that there exist two regimes of behaviour: convergence on hubs and diffusion over the network. We also derive approximations for the population’s behaviour under these regimes. This challenges the widespread assumption that neutral evolution always leads to exploration of the neutral network and elucidates the conditions which result in the evolution of robust organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aguirre, J., Buldú, J.M., Manrubia, S.C.: Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability. Phys. Rev. E 80(6), 066112 (2009)

    Article  Google Scholar 

  2. Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C.: Topological structure of the space of phenotypes: the case of RNA neutral networks. PLoS One 6(10), e26324 (2011)

    Article  Google Scholar 

  3. Bloom, J.D., Lu, Z., Chen, D., Raval, A., Venturelli, O.S., Arnold, F.H.: Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5(1), 1 (2007)

    Article  Google Scholar 

  4. Bornberg-Bauer, E.: How are model protein structures distributed in sequence space? Biophys. J. 73(5), 2393 (1997)

    Article  Google Scholar 

  5. Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. 96(19), 10689–10694 (1999)

    Article  Google Scholar 

  6. Chung, F., Lu, L., Vu, V.: Spectra of random graphs with given expected degrees. Proc. Natl. Acad. Sci. 100(11), 6313–6318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Currin, A., Swainston, N., Day, P.J., Kell, D.B.: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44(5), 1172–1239 (2015)

    Article  Google Scholar 

  8. Devert, A.: When and why development is needed: generative and developmental systems. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1843–1844. ACM (2009)

    Google Scholar 

  9. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)

    Article  Google Scholar 

  10. Draper, D.: The RNA-folding problem. Acc. Chem. Res. 25(4), 201–207 (1992)

    Article  Google Scholar 

  11. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  12. Erdős, P., Renyi, A.: On random graphs i. Publ. Math. Debr. 6, 290–297 (1959)

    MATH  Google Scholar 

  13. Feld, S.: Why your friends have more friends than you do. Am. J. Sociol. 96(6), 1464–1477 (1991)

    Article  Google Scholar 

  14. Gjuvsland, A., Vik, J., Beard, D., Hunter, P., Omholt, S.: Bridging the genotype-phenotype gap: what does it take? J. Physiol. 591(8), 2055–2066 (2013)

    Article  Google Scholar 

  15. Goltsev, A.V., Dorogovtsev, S.N., Oliveira, J., Mendes, J.F.: Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109(12), 128702 (2012)

    Article  Google Scholar 

  16. Jäckel, C., Hilvert, D.: Biocatalysts by evolution. Curr. Opin. Biotechnol. 21(6), 753–759 (2010)

    Article  Google Scholar 

  17. Kaltenbach, M., Tokuriki, N.: Generation of effective libraries by neutral drift. Dir. Evol. Libr. Creat.: Methods Protoc. 1179, 69–81 (2014)

    Google Scholar 

  18. Kimura, M., et al.: Evolutionary rate at the molecular level. Nature 217(5129), 624–626 (1968)

    Article  Google Scholar 

  19. King, J.L., Jukes, T.H.: Non-Darwinian evolution. Science 164(3881), 788–798 (1969)

    Article  Google Scholar 

  20. Martin, T., Zhang, X., Newman, M.: Localization and centrality in networks. Phys. Rev. E 90(5), 052808 (2014)

    Article  Google Scholar 

  21. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)

    Article  Google Scholar 

  22. Mayo, M., Abdelzaher, A., Ghosh, P.: Long-range degree correlations in complex networks. Comput. Soc. Netw. 2(1), 1 (2015)

    Article  Google Scholar 

  23. Nei, M.: Selectionism and neutralism in molecular evolution. Mol. Biol. Evol. 22(12), 2318–2342 (2005)

    Article  Google Scholar 

  24. Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  25. Nilsson, N.J.: The Quest for Artificial Intelligence. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  26. van Nimwegen, E.: Influenza escapes immunity along neutral networks. Science 314(5807), 1884–1886 (2006)

    Article  Google Scholar 

  27. Noirel, J., Simonson, T.: Neutral evolution of proteins: the superfunnel in sequence space and its relation to mutational robustness. J. Chem. Phys. 129(18), 185104 (2008)

    Article  Google Scholar 

  28. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 4(11), e1000206 (2008)

    Article  Google Scholar 

  29. Pastor-Satorras, R., Castellano, C.: Distinct types of eigenvector localization in networks. Sci. Rep. 6, 18847 (2016)

    Article  Google Scholar 

  30. Pigliucci, M.: Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 365(1540), 557–566 (2010)

    Article  Google Scholar 

  31. Reeves, T., Farr, R., Blundell, J., Gallagher, A., Fink, T.: Eigenvalues of neutral networks: interpolating between hypercubes. Discret. Math. 339(4), 1283–1290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reidys, C., Stadler, P.F., Schuster, P.: Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull. Math. Biol. 59(2), 339–397 (1997)

    Article  MATH  Google Scholar 

  33. Restrepo, J.G., Ott, E., Hunt, B.R.: Approximating the largest eigenvalue of network adjacency matrices. Phys. Rev. E 76(5), 056119 (2007)

    Article  MathSciNet  Google Scholar 

  34. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  35. Taverna, D.M., Goldstein, R.A.: Why are proteins so robust to site mutations? J. Mol. Biol. 315(3), 479–484 (2002)

    Article  Google Scholar 

  36. Van Mieghem, P., Wang, H., Ge, X., Tang, S., Kuipers, F.: Influence of assortativity and degree-preserving rewiring on the spectra of networks. Eur. Phys. J. B 76(4), 643–652 (2010)

    Article  MATH  Google Scholar 

  37. Van Nimwegen, E., Crutchfield, J., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)

    Article  Google Scholar 

  38. Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. Lond. B: Biol. Sci. 275(1630), 91–100 (2008)

    Article  Google Scholar 

  39. Wagner, A.: The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. OUP, Oxford (2011)

    Book  Google Scholar 

  40. Wagner, A.: A genotype network reveals homoplastic cycles of convergent evolution in influenza a (H3N2) haemagglutinin. Proc. R. Soc. Lond. B: Biol. Sci. 281(1786), 20132763 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shorten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shorten, D., Nitschke, G. (2017). The Two Regimes of Neutral Evolution: Localization on Hubs and Delocalized Diffusion. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics