Abstract
A dominating set D in a graph is a subset of its vertex set such that each vertex is either in D or has a neighbour in D. From [M.M. Kanté, V. Limouzy, A. Mary and L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, SIDMA 28(4):1916–1929 (2014)] we know that the counting (resp. enumeration) of (inclusions-wise) minimal dominating sets is equivalent to the counting (resp. enumeration) of (inclusion-wise) minimal transversals in hypergraphs. The existence of an output-polynomial time algorithm for the enumeration of minimal dominating sets in graphs is open for a while, but by now for several graph classes it was shown that there is indeed an output-polynomial time algorithm. Since whenever we can count, we can enumerate in output-polynomial time, it is interesting to know for which graph classes one can count the set of minimal dominating sets in polynomial time (it is known that the problem is already \(\#P\)-complete in general graphs). In this manuscript we show that for many known graph classes with an output-polynomial time algorithm for the enumeration of minimal dominating sets, the counting version is \(\#P\)-complete, and for some of them a sub-exponential lower bound is also given (under \(\#\)ETH).
M.M. Kanté—Supported by French Agency for Research under the GraphEN project (ANR-15-CE-0009).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berge, C.: Graphs. North-Holland Mathematical Library, vol. 6. North-Holland Publishing Co., Amsterdam (1985). Second revised edition of part 1 of the 1973 English version
Cochefert, M., Couturier, J.-F., Gaspers, S., Kratsch, D.: Faster algorithms to enumerate hypergraph transversals. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 306–318. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49529-2_23
Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discrete Appl. Math. 157(12), 2675–2700 (2009)
Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)
Curticapean, R.: Block interpolation: a framework for tight exponential-time counting complexity. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 380–392. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_31
Dagum, P., Luby, M.: Approximating the permanent of graphs with large factors. Theor. Comput. Sci. 102(2), 283–305 (1992)
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)
Durand, A., Hermann, M.: On the counting complexity of propositional circumscription. Inf. Process. Lett. 106(4), 164–170 (2008)
Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discrete Appl. Math. 156(11), 2035–2049 (2008)
Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)
Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Sæther, S.H., Villanger, Y.: Output-polynomial enumeration on graphs of bounded (local) linear MIM-width. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 248–258. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_22
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker Inc., New York (1998)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discrete Math. 28(4), 1916–1929 (2014)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham (2015). doi:10.1007/978-3-319-21840-3_37
Kijima, S., Okamoto, Y., Uno, T.: Dominating set counting in graph classes. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 13–24. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22685-4_2
Kotek, T., Preen, J., Simon, F., Tittmann, P., Trinks. M.: Recurrence relations and splitting formulas for the domination polynomial. Electron. J. Comb. 19(3), 27 (2012). Paper 47
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9(3), 558–565 (1980)
Meyer, C.: Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.)
Scott Provan, J., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)
Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circ. Syst. 36(9), 1230–1234 (1989)
Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)
Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kanté, M.M., Uno, T. (2017). Counting Minimal Dominating Sets. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-55911-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55910-0
Online ISBN: 978-3-319-55911-7
eBook Packages: Computer ScienceComputer Science (R0)