Skip to main content

An Integrated Collaborative Approach for Micro Devices Assembly

  • Conference paper
  • First Online:
On the Move to Meaningful Internet Systems: OTM 2016 Workshops (OTM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10034))

Abstract

This paper presents an integrated collaborative approach for Micro Devices Assembly (MDA). The cyber and physical components of such an approach is described in this paper along with a discussion of their design and implementation. The cyber modules focus on assembly planning and 3D Virtual Reality (VR) based simulation activities. The physical components use the outcomes of the cyber modules to perform physical assembly for target MDA activities. A discussion of an Insertion Algorithm is also provided for generating near optimal assembly sequence of micro devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saeedi, E., Abbasi, S., Böhringer, K.F., Parviz, B.A.: Molten-alloy driven self-assembly for nano and micro scale system integration. Fluid Dyn. Mater. Process. 2(4), 221–246 (2007)

    Google Scholar 

  2. Rivero, R., Shet, S., Booty, M., Fiory, A., Ravindra, N.: Modeling of magnetic-field-assisted assembly of semiconductor devices. J. Electron. Mater. 37, 374–378 (2008)

    Article  Google Scholar 

  3. Shetye, S., Eskinazi, I., Arnold, D.: Magnetic self-assembly of millimeter-scale components with angular orientation. J. Microelectromech. Syst. 19, 599–609 (2010)

    Article  Google Scholar 

  4. Greminger, M.A., Yang, G., Nelson, B.J.: Sensing nanonewton level forces by visually tracking structural deformations. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 2, pp. 1943–1948. IEEE (2002)

    Google Scholar 

  5. Cecil, J., Kumar, M.B.R., Lu, Y., Basallali, V.: A review of micro-devices assembly techniques and technology. Int. J. Adv. Manuf. Technol. 83, 1–13 (2015)

    Article  Google Scholar 

  6. Gunda, R., Cecil, J., Calyam, P., Kak, S.: Information centric frameworks for micro assembly. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2011. LNCS, vol. 7046, pp. 93–101. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25126-9_17

    Chapter  Google Scholar 

  7. Van Brussel, H., Peirs, J., Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck, M., Zussman, E.: Assembly of microsystems. CIRP Ann.-Manuf. Technol. 49(2), 451–472 (2000)

    Article  Google Scholar 

  8. Chu, H.K., Mills, J.K., Cleghorn, W.L.: Parallel microassembly with a robotic manipulation system. J. Micromech. Microeng. 20(12), 125027 (2010)

    Article  Google Scholar 

  9. Das, A.N., Murthy, R., Popa, D.O., Stephanou, H.E.: A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans. Autom. Sci. Eng. 9(1), 160–170 (2012)

    Article  Google Scholar 

  10. Jain, R.K., Majumder, S., Ghosh, B., Saha, S.: Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. J. Manuf. Syst. 35, 76–91 (2015)

    Article  Google Scholar 

  11. Gorman, J.J., Dagalakis, N.G.: Force control of linear motor stages for micro assembly. In: Proceedings of IMECE 2003, Washington DC, pp. 615–623 (2003). New Reference

    Google Scholar 

  12. Thompson, J.A,, Fearing, R.S.: Automating microassembly with ortho-tweezers and force sensing. In: IROS 2001, Maui, HI, 29 October–3 November, pp. 1327–1334 (2001)

    Google Scholar 

  13. Rizzi, A.A., Gowdy, J., Hollis, R.L.: Distributed coordination in modular precision assembly systems. Int. J. Robot. Res. 20(10), 819–838 (2001)

    Article  Google Scholar 

  14. Alex, J., Vikramaditya, B., Nelson, B.J.: A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes. In: Proceedings of DETC, vol. 98, no. 1998, pp. 13–16, September 1998

    Google Scholar 

  15. Ferreira, A., Cassier, C., Hirai, S.: Automatic microassembly system assisted by vision servoing and virtual reality. IEEE/ASME Trans. Mechatron. 9(2), 321–333 (2004)

    Article  Google Scholar 

  16. Cassie, C., Ferreira, A., Hirai, S.: Combination of vision servoing techniques and VRbased simulation for semi-autonomous microassembly workstation. In: Proceedings of 2002 IEEE: International Conference on Robotics and Automation, pp. 1501–1506 (2002)

    Google Scholar 

  17. Probst, M., Hürzeler, C., Borer, R., Nelson, B.J.: Virtual reality for microassembly. Project report, Institute of Robotics and Intelligent Systems, ETH Zurich, Switzerland (2007)

    Google Scholar 

  18. Dembele, S., Tamadazte, B., Le Fort-Piat, N., Marchand, E.: CAD model-based tracking and 3D visual-based control for MEMS microassembly. Int. J. Robot. Res. 29(11), 1416–1434 (2010)

    Article  Google Scholar 

  19. Popa, D., Kang, B., Sin, J., Zou, J.: Reconfigurable micro-assembly system for photonics applications. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1495–1502 (2002)

    Google Scholar 

  20. Hollis, R., Gowdy, J.: Miniature factories for precision assembly. In: Proceedings of International Workshop on Micro-Factories, Tsukuba, Japan, pp. 1–6, December 1998. (Hériban, D., Gauthier, M., September 2008)

    Google Scholar 

  21. Zyda, M.: From visual simulation to virtual reality to games. IEEE Comput. Soc. 38(9), 25–32 (2005)

    Article  Google Scholar 

  22. De Sa, A.G., Zachmann, G.: Virtual reality as a tool for verification of assembly and maintenance processes. Comput. Graph. 23(3), 389–403 (1999)

    Article  Google Scholar 

  23. Gallagher, A.G., Cates, C.U.: Virtual reality for the operating room and cardiac catheterisation laboratory. Lancet 364(9444), 1538–1540 (2004)

    Article  Google Scholar 

  24. Stapleton, C., Huges, C., Moshell, M., Micikevicius, P., Altman, M.: Applying mixed reality to enterainment. IEEE Comput. 35(12), 122–124 (2002)

    Article  Google Scholar 

  25. Lu, Y., Cecil, J.: An Internet of Things (IoT)-based collaborative framework for advanced manufacturing. Int. J. Adv. Manuf. Technol. 84(5), 1141–1152 (2016)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (Grant Numbers 0423907, 0965153, 1256431, 1257803, 1359297, 1447237 and 1547156), Sandia National Laboratories and Los Alamos National Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cecil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cecil, J., Albuhamood, S. (2017). An Integrated Collaborative Approach for Micro Devices Assembly. In: Ciuciu, I., et al. On the Move to Meaningful Internet Systems: OTM 2016 Workshops. OTM 2016. Lecture Notes in Computer Science(), vol 10034. Springer, Cham. https://doi.org/10.1007/978-3-319-55961-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55961-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55960-5

  • Online ISBN: 978-3-319-55961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics