Skip to main content

A Meta-Review of Feature Selection Techniques in the Context of Microarray Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

Microarray technologies produce very large amounts of data that need to be classified for interpretation. Large data coupled with small sample sizes make it challenging for researchers to get useful information and therefore a lot of effort goes into the design and testing of feature selection tools; literature abounds with description of numerous methods. In this paper we select five representative review papers in the field of feature selection for microarray data in order to understand their underlying classification of methods. Finally, on this base, we propose an extended taxonomy for categorizing feature selection techniques and use it to classify the main methods presented in the selected reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacroix, Z., Critchlow, T.: Bioinformatics Managing Scientific Data. Academic Press, Cambridge (2003). 441 p.

    Google Scholar 

  2. Somorjai, R.L., Dolenko, B., Baumgartner, R.: Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19, 1484–1491 (2003). doi:10.1093/bioinformatics/btg182

    Article  Google Scholar 

  3. Milward, E.A., Shahandeh, A., Heidari, M., et al.: Transcriptomics. Encycl. Cell Biol. 160–165 (2015). doi:10.1016/B978-0-12-394447-4.40029-5

  4. Jirapech-Umpai, T., Aitken, S.: Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform. 6, 148 (2005). doi:10.1186/1471-2105-6-148

    Article  Google Scholar 

  5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). doi:10.1162/153244303322753616

    MATH  Google Scholar 

  6. Lai, C., Reinders, M.J.T., van’t Veer, L.J., Wessels, L.F.: A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets. BMC Bioinform. 7, 235 (2006). doi:10.1186/1471-2105-7-235

    Article  Google Scholar 

  7. Langley, P.A.T., Iba, W.: Average-case analysis of a nearest neighbor algorithm, pp. 889–894 (1993)

    Google Scholar 

  8. Almuallim, H., Dietterich, T.: Learning boolean concepts in the presence of many irrelevant features. AI 69, 279–305 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Kira, K., Rendell, L.: The feature selection problem: traditional methods and a new algorithm. In: AAAI, pp. 129–134 (1992). doi:10.1016/S0031-3203(01)00046-2

  10. Weston, J., Pavlidis, P., Cai, J., Grundy, W.N.: Gene functional classification from heterogeneous data. In: Proceedings of the Fifth Annual International Conference on Computational Molecular Biology, pp. 1–11 (2001)

    Google Scholar 

  11. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007). doi:10.1093/bioinformatics/btm344

    Article  Google Scholar 

  12. Lazar, C., Taminau, J., Meganck, S., et al.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1106–1119 (2012). doi:10.1109/TCBB.2012.33

    Article  Google Scholar 

  13. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., et al.: A review of microarray datasets and applied feature selection methods. Inf. Sci. (Ny) 282, 111–135 (2014). doi:10.1016/j.ins.2014.05.042

    Article  Google Scholar 

  14. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40, 16–28 (2014). doi:10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  15. Hira, Z.M., Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. (2015). doi:http://dx.doi.org/10.1155/2015/198363

  16. Langley, P., Sage, S.: Induction of selective bayesian classifiers. In: Proceedings of the UAI-1994 (1994)

    Google Scholar 

  17. Liu, H., Motoda, H., Yu, L.: A selective sampling approach to active feature selection. Artif. Intell. 159, 49–74 (2004). doi:10.1016/j.artint.2004.05.009

    Article  MATH  MathSciNet  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Greedy algorithms (Chapter 17). In: Introduction to Algorithms (1990)

    Google Scholar 

  19. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: International Conference on Machine Learning, pp. 1–8 (2003). doi:10.1.1.68.2975

    Google Scholar 

  20. Bair, E., Tibshirani, R.: Semi-supervised methods to predict patient survival from gene expression data (2004). doi:10.1371/journal.pbio.0020108

  21. Song, L., Smola, A., Gretton, A., et al.: Feature selection via dependence maximization. J. Mach. Learn. Res. 13, 1393–1434 (2012). doi:10.1145/1273496.1273600

    MATH  MathSciNet  Google Scholar 

  22. Bolon-Canedo, V., Seth, S., Sanchez-Marono, N., et al.: Statistical dependence measure for feature selection in microarray datasets. In: ESANN, pp. 27–29 (2011)

    Google Scholar 

  23. Lan, L., Vucetic, S.: Improving accuracy of microarray classification by a simple multi-task feature selection filter. Int. J. Data Mining Bioinform. 5, 189–208 (2011)

    Article  Google Scholar 

  24. Meyer, P.E., Schretter, C., Bontempi, G.: Information-theoretic feature selection in microarray data using variable complementarity. IEEE J. Sel. Top Sig. Process. 2, 261–274 (2008). doi:10.1109/JSTSP.2008.923858

    Article  Google Scholar 

  25. Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms for multiclass microarray data. Biol. Direct. 7, 33 (2012). doi:10.1186/1745-6150-7-33

    Article  Google Scholar 

  26. Ferreira, A.J., Figueiredo, M.A.T.: Efficient feature selection filters for high-dimensional data. Pattern Recognit. Lett. 33, 1794–1804 (2012). doi:10.1016/j.patrec.2012.05.019

    Article  Google Scholar 

  27. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint ℓ2, 1-norms minimization. Adv. Neural Inf. Process. Syst. 23, 1813–1821 (2010)

    Google Scholar 

  28. Ferreira, A.J., Figueiredo, M.A.T.: An unsupervised approach to feature discretization and selection. Pattern Recognit. 45, 3048–3060 (2012). doi:10.1016/j.patcog.2011.12.008

    Article  Google Scholar 

  29. Shah, M., Marchand, M., Corbeil, J.: Feature selection with conjunctions of decision stumps and learning from microarray data. IEEE Trans. Pattern Anal. Mach. Intell. 34, 174–186 (2011). doi:10.1109/TPAMI.2011.82

    Article  Google Scholar 

  30. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. Comput. Sci. 98, 181–191 (1998)

    Google Scholar 

  31. Bolon-Canedo, V., Sanchez-Marono, N., Alonso-Betanzos, A.: On the effectiveness of discretization on gene selection of microarray data. In: 2010 International Joint Conference on Neural Networks, pp. 1–8. IEEE (2010)

    Google Scholar 

  32. Sanchez-Marono, N., Alonso-Betanzos, A., Garcia-Gonzalez, P., Bolon-Canedo, V.: Multiclass classifiers vs multiple binary classifiers using filters for feature selection. In: 2010 International Joint Conference on Neural Networks, pp. 1–8. IEEE (2010)

    Google Scholar 

  33. González Navarro, F.F., Muñoz, L.A.B.: Gene subset selection in microarray data using entropic filtering for cancer classification. Expert Syst. 26, 113–124 (2009)

    Article  Google Scholar 

  34. Wang, J., Wu, L., Kong, J., et al.: Maximum weight and minimum redundancy: a novel framework for feature subset selection. Pattern Recognit. 46(6), 1616–1627 (2013)

    Article  MATH  Google Scholar 

  35. Wanderley, M.F., Gardeux, V.: GA-KDE-Bayes: an evolutionary wrapper method based on non-parametric density estimation applied to bioinformatics problems. In: 21st European Symposium on Artificial Neural Networks-ESANN, pp. 24–26 (2013)

    Google Scholar 

  36. Sharma, A., Imoto, S., Miyano, S.: A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 754–764 (2012)

    Article  Google Scholar 

  37. Wang, G., Song, Q., Xu, B., Zhou, Y.: Selecting feature subset for high dimensional data via the propositional FOIL rules. Pattern Recognit. 46, 199–214 (2013). doi:10.1016/j.patcog.2012.07.028

    Article  Google Scholar 

  38. Canul-Reich, J., Hall, L., Goldgof, D., Eschrich, S.: Iterative feature perturbation method as a gene selector for microarray data, pp. 1–25 (2012)

    Google Scholar 

  39. Maldonado, S., Weber, R., Basak, J.: Simultaneous feature selection and classification using kernel-penalized support vector machines. Inf. Sci. (Ny) 181, 115–128 (2011). doi:10.1016/j.ins.2010.08.047

    Article  Google Scholar 

  40. Anaissi, A., Kennedy, P.J., Goyal, M.: Feature selection of imbalanced gene expression microarray data. In: 2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD), pp. 73–78 (2011). doi:10.1109/SNPD.2011.12

  41. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001). doi:10.1073/pnas.091062498

    Article  MATH  Google Scholar 

  42. Trevino, V., Falciani, F.: GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics 22, 1154–1156 (2006). doi:10.1093/bioinformatics/btl074

    Article  Google Scholar 

  43. Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001). doi:10.1093/bioinformatics/17.12.1131

    Article  Google Scholar 

  44. Su, Y., Murali, T.M., Pavlovic, V., et al.: RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19, 1578–1579 (2003). doi:10.1093/bioinformatics/btg179

    Article  Google Scholar 

  45. Leek, J.T., Monsen, E., Dabney, A.R., Storey, J.D.: EDGE: extraction and analysis of differential gene expression. Bioinformatics 22, 507–508 (2006). doi:10.1093/bioinformatics/btk005

    Article  Google Scholar 

  46. Medina, I., Montaner, D., Tárraga, J., Dopazo, J.: Prophet, a web-based tool for class prediction using microarray data. Bioinformatics 23, 390–391 (2007). doi:10.1093/bioinformatics/btl602

    Article  Google Scholar 

  47. Yang, Y.H., Xiao, Y., Segal, M.R.: Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21, 1084–1093 (2005). doi:10.1093/bioinformatics/bti108

    Article  Google Scholar 

  48. Breitling, R., Armengaud, P., Amtmann, A., Herzyk, P.: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004). doi:10.1016/j.febslet.2004.07.055

    Article  Google Scholar 

  49. Smyth, G.K.: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1–25 (2004). doi:10.2202/1544-6115.1027

    Article  MATH  MathSciNet  Google Scholar 

  50. Dudoit, S.: Multiple hypothesis testing in microarray experiments multiple hypothesis testing in microarray experiments. Stat. Sci. 18, 7–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Dean, N., Raftery, A.E.: Normal uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinform. 6, 173 (2005). doi:10.1186/1471-2105-6-173

    Article  Google Scholar 

  52. Storey, J.: A direct approach to false discovery rates on JSTOR. Wiley Online Libr. 64, 479–498 (2002). doi:10.1111/1467-9868.00346

    MATH  Google Scholar 

  53. Scheid, S., Spang, R.: Twilight; a bioconductor package for estimating the local false discovery rate. Bioinformatics 21, 2921–2922 (2005). doi:10.1093/bioinformatics/bti436

    Article  Google Scholar 

  54. Gould, J., Getz, G., Monti, S., et al.: Comparative gene marker selection suite. Bioinformatics 22, 1924–1925 (2006). doi:10.1093/bioinformatics/btl196

    Article  Google Scholar 

  55. Hruschka, E.R., Hruschka, E.R., Ebecken, N.F.F.: Feature selection by Bayesian networks. In: Tawfik, A.Y., Goodwin, S.D. (eds.) AI 2004. LNCS (LNAI), vol. 3060, pp. 370–379. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24840-8_26

    Chapter  Google Scholar 

  56. Rau, A., Jaffrézic, F., Foulley, J.-L., Doerge, R.W.: An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol. 9, Article 9 (2010). doi:10.2202/1544-6115.1513

  57. Ooi, C.H., Tan, P.: Prediction for the analysis of gene expression data. Bioinformatics 19, 37–44 (2003)

    Article  Google Scholar 

  58. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. (2002). doi:10.1023/A:1012487302797

    MATH  Google Scholar 

  59. Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006). doi:10.1186/1471-2105-7-3

    Article  Google Scholar 

  60. Li, L., Jiang, W., Li, X., et al.: A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics (2005). doi:10.1016/j.ygeno.2004.09.007

    Google Scholar 

  61. Ma, S., Song, X., Huang, J.: Supervised group Lasso with applications to microarray data analysis. BMC Bioinform. 8, 60 (2007). doi:10.1186/1471-2105-8-60

    Article  Google Scholar 

  62. Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1154–1166 (2004). doi:10.1109/TPAMI.2004.71

    Article  Google Scholar 

  63. Xu, Z., King, I., Lyu, M.R.T., Jin, R.: Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21, 1033–1047 (2010). doi:10.1109/TNN.2010.2047114

    Article  Google Scholar 

  64. Zhu, X.: Semi-supervised learning literature survey contents. Sci. York 10, 10 (2008). doi:10.1.1.103.1693

    Google Scholar 

  65. Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: Proceedings of the 7th SIAM International Conference on Data Mining, pp. 641–646 (2007)

    Google Scholar 

  66. Pudil, P., Novovičová, J., Choakjarernwanit, N., Kittler, J.: Feature selection based on the approximation of class densities by finite mixtures of special type. Pattern Recognit. 28, 1389–1398 (1995). doi:10.1016/0031-3203(94)00009-B

    Article  Google Scholar 

  67. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24, 301–312 (2002). doi:10.1109/34.990133

    Article  Google Scholar 

  68. Pal, S.K., De, R.K., Basak, J.: Unsupervised feature evaluation: a neuro-fuzzy approach. IEEE Trans. Neural Netw. 11, 366–376 (2000). doi:10.1109/72.839007

    Article  Google Scholar 

  69. Xing, E.P., Karp, R.M.: CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17(Suppl. 1), S306–S315 (2001). doi:10.1093/bioinformatics/17.suppl_1.S306

    Article  Google Scholar 

  70. Yang, P., Zhou, B.B., Zhang, Z., Zomaya, A.Y.: A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data. BMC Bioinform. 11(Suppl. 1), S5 (2010). doi:10.1186/1471-2105-11-S1-S5

    Google Scholar 

  71. Jafari, P., Azuaje, F.: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med. Inform. Decis. Mak. 6, 27 (2006). doi:10.1186/1472-6947-6-27

    Article  Google Scholar 

  72. Wang, Y., Tetko, I.V., Hall, M.A., et al.: Gene selection from microarray data for cancer classification - a machine learning approach. Comput. Biol. Chem. 29, 37–46 (2005). doi:10.1016/j.compbiolchem.2004.11.001

    Article  MATH  Google Scholar 

  73. Yeoh, E.-J., Ross, M.E., Shurtleff, S.A., et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)

    Article  Google Scholar 

  74. Thomas, J.G., Olson, J.M., Tapscott, S.J., Zhao, L.P.: An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 1227–1236 (2001)

    Google Scholar 

  75. Newton, M.A., Kendziorski, C.M., Richmond, C.S., et al.: On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J. Comput. Biol. 8, 37–52 (2001). doi:10.1089/106652701300099074

    Article  Google Scholar 

  76. Bhanot, G., Alexe, G., Venkataraghavan, B., Levine, A.J.: A robust meta-classification strategy for cancer detection from MS data. Proteomics 6, 592–604 (2006). doi:10.1002/pmic.200500192

    Article  Google Scholar 

  77. Baldi, P., Long, A.D.: A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509–519 (2001). doi:10.1093/bioinformatics/17.6.509

    Article  Google Scholar 

  78. Fox, R.J., Dimmic, M.W.: A two-sample Bayesian t-test for microarray data. BMC Bioinform. 7, 126 (2006). doi:10.1186/1471-2105-7-126

    Article  Google Scholar 

  79. Ben-Dor, A., Bruhn, L., Friedman, N., et al.: Tissue classification with gene expression profiles. J. Comput. Biol. 7, 559–583 (2000). doi:10.1089/106652700750050943

    Article  Google Scholar 

  80. Hart, T.C., Corby, P.M., Hauskrecht, M., et al.: Identification of microbial and proteomic biomarkers in early childhood caries. Int. J. Dent. 2011, 196721 (2011). doi:10.1155/2011/196721

    Article  Google Scholar 

  81. Efron, B., Tibshirani, R., Storey, J.D., Tusher, V.: Empirical Bayes analysis of a microarray experiment. J. Am. Stat. Assoc. 96, 1151–1160 (2001). doi:10.1198/016214501753382129

    Article  MATH  MathSciNet  Google Scholar 

  82. Pan, W.: On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19, 1333–1340 (2003)

    Article  Google Scholar 

  83. Park, P.J., Pagano, M., Bonetti, M.: A nonparametric scoring algorithm for identifying informative genes from microarray data. In: Pacific Symposium on Biocomputing, pp. 52–63 (2001)

    Google Scholar 

  84. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87 (2002). doi:10.1198/016214502753479248

    Article  MATH  MathSciNet  Google Scholar 

  85. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). doi:10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  86. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997). doi:10.1126/science.278.5338.680

    Article  Google Scholar 

  87. Golub, T.R., Slonim, D.K., Tamayo, P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). doi:10.1126/science.286.5439.531

    Article  Google Scholar 

  88. Bo, T., Jonassen, I.: New feature subset selection procedures for classification of expression profiles. Genome Biol. 3, RESEARCH0017 (2002)

    Google Scholar 

  89. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the IEEE Conference Computational Systems Bioinformatics, pp. 523–528 (2003)

    Google Scholar 

  90. Yeung, K.Y., Bumgarner, R.E.: Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol. 4, R83 (2003). doi:10.1186/gb-2003-4-12-r83

    Article  Google Scholar 

  91. Koller, D., Sahami, M.: Toward optimal feature selection, pp. 284–292 (1996)

    Google Scholar 

  92. Gevaert, O., De Smet, F., Timmerman, D., et al.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, 184–190 (2006). doi:10.1093/bioinformatics/btl230

    Article  Google Scholar 

  93. Mamitsuka, H.: Selecting features in microarray classification using ROC curves. Pattern Recogn. 39, 2393–2404 (2006). doi:10.1016/j.patcog.2006.07.010

    Article  MATH  Google Scholar 

  94. Xing, E.P., Jordan, M.I., Karp, R.M.: Feature selection for high-dimensional genomic microarray data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp 601–608. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  95. Kittler, J.: Pattern recognition and signal processing. In: Pattern Recognition Signal Processing, pp. 41–60. Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands (1978)

    Google Scholar 

  96. Ferri, F., et al.: Comparative study of techniques for large-scale feature selection. In: Pattern Recognition in Practice IV, Multiple Paradigms, Comparative Studies and Hybrid Systems, pp. 403–413. Elsevier, Amsterdam (1994)

    Google Scholar 

  97. Siedelecky, W., Sklansky, J.: On automatic feature selection. Int. J. Pattern Recognit. 2, 197–220 (1998)

    Article  Google Scholar 

  98. Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognit. 39, 2383–2392 (2006). doi:10.1016/j.patcog.2005.11.001

    Article  Google Scholar 

  99. Perez, M., Marwala, T.: Microarray data feature selection using hybrid genetic algorithm simulated annealing. In: 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1–5 (2012)

    Google Scholar 

  100. Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms (1994)

    Google Scholar 

  101. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  102. Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by Bayesian networks based optimization. Artif. Intell. 123, 157–184 (2000). doi:10.1016/S0004-3702(00)00052-7

    Article  MATH  Google Scholar 

  103. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. (2002). doi:10.1023/A:1012450327387

    MATH  Google Scholar 

  104. Liu, Q., Sung, A.H., Chen, Z., et al.: Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data (2009). doi:10.1371/journal.pone.0008250

  105. Tang, E.K., Suganthan, P.N., Yao, X.: Gene selection algorithms for microarray data based on least squares support vector machine. BMC Bioinform. 7, 1–16 (2006). doi:10.1186/1471-2105-7-95

    Article  Google Scholar 

  106. Xia, X., Xing, H., Liu, X.: Analyzing kernel matrices for the identification of differentially expressed genes (2013). doi:10.1371/journal.pone.0081683

  107. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. USA 99, 6562–6566 (2002). doi:10.1073/pnas.102102699

    Article  MATH  Google Scholar 

  108. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  109. Weston, J., Elisseeff, A., Scholkopf, B., Tipping, M.: Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003). doi:10.1162/153244303322753751

    MATH  MathSciNet  Google Scholar 

  110. Leung, Y., Hung, Y.: A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 7, 108–117 (2008). doi:10.1109/TCBB.2008.46

    Article  Google Scholar 

  111. Yang, F., Mao, K.Z.: Robust feature selection for microarray data based on multicriterion fusion. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1080–1092 (2010). doi:10.1109/TCBB.2010.103

    Article  Google Scholar 

  112. Chuang, L., Yang, C., Wu, K., Yang, C.: A hybrid feature selection method for DNA microarray data. Comput. Biol. Med. 41, 228–237 (2011). doi:10.1016/j.compbiomed.2011.02.004

    Article  Google Scholar 

  113. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: An ensemble of filters and classifiers for microarray data classification. Pattern Recognit. 45, 531–539 (2012). doi:10.1016/j.patcog.2011.06.006

    Article  Google Scholar 

  114. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Trans. Nanobiosci. 9, 31–37 (2010). doi:10.1109/TNB.2009.2035284

    Article  Google Scholar 

  115. Shreem, S.S., Abdullah, S., Nazri, M.Z.A., Alzaqebah, M.: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection. J. Theor. Appl. Inf. Technol. 46, 1034–1039 (2012)

    Google Scholar 

  116. Lee, C.-P., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. 11, 208–213 (2011). doi:10.1016/j.asoc.2009.11.010

    Article  Google Scholar 

  117. Segal, E., Pe’er, D., Regev, A., et al.: Learning module networks. J. Mach. Learn. Res. 6, 557–588 (2005). doi:10.1016/j.febslet.2004.11.019

    MATH  MathSciNet  Google Scholar 

  118. Kustra, R., Zagdanski, A.: Data-fusion in clustering microarray data: balancing discovery and interpretability. IEEE/ACM Trans. Comput. Biol. Bioinform. 7, 50–63 (2010). doi:10.1109/TCBB.2007.70267

    Article  Google Scholar 

  119. Cheng, J., Cline, M., Martin, J., et al.: A knowledge-based clustering algorithm driven by gene ontology. J. Biopharm. Stat. 14, 687–700 (2004)

    Article  MathSciNet  Google Scholar 

  120. Chuang, H.-Y., Lee, E., Liu, Y.-T., et al.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007). doi:10.1038/msb4100180

    Article  Google Scholar 

  121. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002). doi:10.1093/bioinformatics/18.suppl_1.S136

    Article  Google Scholar 

  122. Li, C., Li, H.: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175–1182 (2008). doi:10.1093/bioinformatics/btn081

    Article  Google Scholar 

  123. Rapaport, F., Zinovyev, A., Dutreix, M., et al.: Classification of microarray data using gene networks. BMC Bioinform. 15, 1–15 (2007). doi:10.1186/1471-2105-8-35

    Google Scholar 

  124. Bandyopadhyay, N., Kahveci, T., Goodison, S., et al.: Pathway-based feature selection algorithm for cancer microarray data (2009). doi:10.1155/2009/532989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mungloo-Dilmohamud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mungloo-Dilmohamud, Z., Jaufeerally-Fakim, Y., Peña-Reyes, C. (2017). A Meta-Review of Feature Selection Techniques in the Context of Microarray Data. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics