Skip to main content

Evaluation of Algorithms for Automatic Classification of Heart Sound Signals

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Abstract

Auscultation is the primary tool for detection and diagnosis of cardiovascular diseases in hospitals and home visits. This fact has led in the recent years to the development of automatic methods for heart sound classification, thus allowing for detecting cardiovascular pathologies in an effective way. The aim of this paper is to review recent methods for automatic classification and to apply several signal processing techniques in order to evaluate them in the PhysioNet/CinC Challenge 2016 results. For this purpose, the records of the open database PysioNet/Computing are modified by segmentation or filtering methods and the results were tested using the challenge best ranked algorithms. Results show that an adequate preprocessing of data and subsequent feature selection may improve the performance of machine learning and classification techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO. 2016 world statistics on cardiovascular disease. Technical report (2016). http://www.who.int/mediacentre/factsheets/fs317/en/

  2. Clifford, G.D., Liu, C., Moody, B., Springer, D., Silva, I., Li, Q., Mark, R.G.: Classification of normal/abnormal heart sound recordings: the physionet/computing in cardiology challenge 2016. Comput. Cardiol, pp. 609–612 (2016)

    Google Scholar 

  3. Ortiz, J.J.G., Phoo, C.P., Wiens, J.: Heart sound classification based on temporal alignment techniques. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  4. Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E., et al.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181 (2016)

    Article  Google Scholar 

  5. Classification of normal/abnormal heart sound recordings: the physionet/cin cardiology challenge 2016 (2016). http://physionet.org/challenge/2016/

  6. Akay, Y., Akay, M., Welkowitz, W., Kostis, J.: Noninvasive detection of coronary artery disease. IEEE Eng. Med. Biol. Mag. 13(5), 761–764 (1994)

    Article  Google Scholar 

  7. Liang, H., Nartimo, I.: A feature extraction algorithm based on wavelet packet decomposition for heart sound signals. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 93–96. IEEE (1998)

    Google Scholar 

  8. Uguz, H.: Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy. Neural Comput. Appl. 21(7), 1617–1628 (2012)

    Article  Google Scholar 

  9. Zheng, Y., Guo, X., Ding, X.: A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification. Expert Syst. Appl. 42(5), 2710–2721 (2015)

    Article  Google Scholar 

  10. Ari, S., Hembram, K., Saha, G.: Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier. Expert Syst. Appl. 37(12), 8019–8026 (2010)

    Article  Google Scholar 

  11. Wang, P., Lim, C.S., Chauhan, S., Foo, J.Y.A., Anantharaman, V.: Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35(3), 367–374 (2007)

    Article  Google Scholar 

  12. Saracoglu, R.: Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction. Eng. Appl. Artif. Intell. 25(7), 1523–1528 (2012)

    Article  Google Scholar 

  13. Bentley, P., Grant, P., McDonnell, J.: Time-frequency and time-scale techniques for the classification of native and bioprosthetic heart valve sounds. IEEE Trans. Bio-med. Eng. 45(1), 125 (1998)

    Article  Google Scholar 

  14. Quiceno-Manrique, A., Godino-Llorente, J., Blanco-Velasco, M., Castellanos-Dominguez, G.: Selection of dynamic features based on time-frequency representations for heart murmur detection from phonocardiographic signals. Ann. Biomed. Eng. 38(1), 118–137 (2010)

    Article  Google Scholar 

  15. Zabihi, M., Rad, A.B., Kiranyaz, S., Gabbouj, M., Katsaggelos, A.K.: Heart sound anomaly and quality detection using ensemble of neural networks without segmentation. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  16. Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 8(3), 273–281 (2013)

    Article  Google Scholar 

  17. Varghees, V.N., Ramachandran, K.: A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 13, 174–188 (2014)

    Article  Google Scholar 

  18. Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7(5), 509–516 (2012)

    Article  Google Scholar 

  19. Sedighian, P., Subudhi, A.W., Scalzo, F., Asgari, S.: Pediatric heart sound segmentation using hidden Markov model. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5490–5493. IEEE (2014)

    Google Scholar 

  20. Yuenyong, S., Nishihara, A., Kongprawechnon, W., Tungpimolrut, K.: A framework for automatic heart sound analysis without segmentation. Biomed. Eng. Online 10(1), 1 (2011)

    Article  Google Scholar 

  21. Deng, S.W., Han, J.Q.: Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Gener. Comput. Syst. 60, 13–21 (2016)

    Article  Google Scholar 

  22. Balili, C.C., Sobrepena, M.C.C., Naval, P.C.: Classification of heart sounds using discrete and continuous wavelet transform and random forests. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 655–659. IEEE (2015)

    Google Scholar 

  23. Moukadem, A., Dieterlen, A., Brandt, C.: Shannon entropy based on the S-transform spectrogram applied on the classification of heart sounds. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 704–708. IEEE (2013)

    Google Scholar 

  24. Potes, C., Parvaneh, S., Rahman, A., Conroy, B.: Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  25. Godino-Llorente, J.I., Gomez-Vilda, P.: Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors. IEEE Trans. Biomed. Eng. 51(2), 380–384 (2004)

    Article  Google Scholar 

  26. Rubin, J., Abreu, R., Ganguli, A., Nelaturi, S., Matei, I., Sricharan, K.: Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  27. Homsi, M.N., Medina, N., Hernandez, M., Quintero, N., Perpiñan, G., Warrick, A.Q.P.: Automatic heart sound recording classification using a nested set of ensemble algorithms. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  28. Goda, M.A., Hajas, P.: Morphological determination of pathological PCG signals by time and frequency domain analysis. In: International Conference on Computing in Cardiology 2016 (2016)

    Google Scholar 

  29. Springer, D.B., Tarassenko, L., Clifford, G.D.: Logistic regression-HSMM-based heart sound segmentation. IEEE Trans. Biomed. Eng. 63(4), 822–832 (2016)

    Google Scholar 

  30. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the project TIN2015-67020-P of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Enrique Pérez-Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pérez-Guzmán, R.E., García-Bermúdez, R., Rojas-Ruiz, F., Céspedes-Pérez, A., Ojeda-Riquenes, Y. (2017). Evaluation of Algorithms for Automatic Classification of Heart Sound Signals. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics