Skip to main content

Representativeness of a Set of Metabolic Pathways

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Included in the following conference series:

Abstract

Pathways and more precisely Elementary Flux Modes (EFM) are artefacts extracted from metabolic networks that are very useful to achieve the comprehension of a very specific metabolic function or dysfunction. Many methods to extract pathways have already been developed and all of them have to deal with common problems like the production of infeasible subnetworks and the production of the same solution repetitively. Although some strategies have been incorporated to those methods in order to mitigate the problems, they get already a high ratio of repetitions and the insistent presence of the same reactions in the solutions. We do a proposal focused on linear programming (LP) methods for pathway extraction. It aims to improve the representation of every reaction in the set of computed pathways by penalizing the most often included reactions during the extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiele, I., Palsson, B.Ø.: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5(1), 93–121 (2010)

    Article  Google Scholar 

  2. Schmidt, B.J., Ebrahim, A., Metz, T.O., Adkins, J.N., Palsson, B.Ø., Hyduke, D.R.: GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29(22), 2900–2908 (2013)

    Article  Google Scholar 

  3. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(02), 165–182 (1994)

    Article  Google Scholar 

  4. IBM: IBM ILOG CPLEX Optimizer (2010). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  5. Forrest, J.: CLP-coin-or linear program solver. In: DIMACS Workshop on COIN-OR, 17–20 July (2006)

    Google Scholar 

  6. Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14(2), 301–312 (2004)

    Article  Google Scholar 

  7. Larhlimi, A., David, L., Selbig, J., Bockmayr, A.: F2C2: a fast tool for the computation of flux coupling in genome-scale metabolic networks. BMC Bioinform. 13(1), 57 (2012)

    Article  Google Scholar 

  8. Becker, S.A., Price, N.D., Palsson, B.Ø.: Metabolite coupling in genome-scale metabolic networks. BMC Bioinform. 7(1), 1 (2006)

    Article  Google Scholar 

  9. De Figueiredo, L.F., Schuster, S., Kaleta, C., Fell, D.A.: Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 24(22), 2615–2621 (2008)

    Article  Google Scholar 

  10. Rezola, A., Pey, J., Tobalina, L., Rubio, Á., Beasley, J.E., Planes, F.J.: Advances in network-based metabolic pathway analysis and gene expression data integration. Brief. Bioinform. 16(2), 265–279 (2015)

    Article  Google Scholar 

  11. Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic networks. Mol. Biol. Rep. 29(1–2), 233–236 (2002)

    Article  Google Scholar 

  12. De Figueiredo, L.F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J.E., Schuster, S., Planes, F.J.: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25(23), 3158–3165 (2009)

    Article  Google Scholar 

  13. Pey, J., Planes, F.: Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks. Bioinformatics 30(15), 2197–2203 (2014). (Oxford, England)

    Article  Google Scholar 

  14. Rezola, A., Pey, J., de Figueiredo, L.F., Podhorski, A., Schuster, S., Rubio, A., Planes, F.J.: Selection of human tissue-specific elementary flux modes using gene expression data. Bioinformatics 29(16), 2009–2016 (2013)

    Article  Google Scholar 

  15. Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinform. 5(1), 1 (2004)

    Article  Google Scholar 

  16. Planes, F.J., Beasley, J.E.: A critical examination of stoichiometric and path-finding approaches to metabolic pathways. Brief. Bioinform. 9(5), 422–436 (2008)

    Article  Google Scholar 

  17. Jevremovic, D., Boley, D., Sosa, C.P.: Divide-and-conquer approach to the parallel computation of elementary flux modes in metabolic networks. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum (IPDPSW), pp. 502–511. IEEE (2011)

    Google Scholar 

  18. Hidalgo, J.F., Guil, F., Garcia, J.M.: A new approach to obtain EFMs using graph methods based on the shortest path between end nodes. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 641–649. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16483-0_62

    Google Scholar 

  19. Wilcoxon, F., Katti, S., Wilcox, R.A.: Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1, 171–259 (1970)

    MATH  Google Scholar 

  20. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  21. Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.Ø.: A genome-scale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermodynamic information. Mol. Syst. Biol. 3(1), 121 (2007)

    Google Scholar 

  22. Orth, J.D., Fleming, R.M., Palsson, B.: Reconstruction and use of microbial metabolic networks: the core escherichia coli metabolic model as an educational guide. EcoSal Plus 4(1) (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and European Commission FEDER under grant TIN2015-66972-C5-3-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hidalgo, J.F., Egea, J.A., Guil, F., García, J.M. (2017). Representativeness of a Set of Metabolic Pathways. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics