Skip to main content

A Multi-sensor Approach for Biomimetic Control of a Robotic Prosthetic Hand

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Included in the following conference series:

Abstract

Robotic prosthetic hands with five digits have become commercially available however their use is limited to a few grip patterns due to the unnatural and unreliable human-machine interface (HMI). The research community has addressed this problem extensively by investigating Pattern Recognition (PR) based surface-electromyography (sEMG) control. This control strategy has been recently commercialized however has yet to show clinical adoption. One of the reasons identified in the literature is due to the sEMG signals that are affected by sweating, electrode shift, ambient noise, fatigue, cross-talk between adjacent muscles, signal drifting, and force level variation. Hence recently the scientific community has started proposing multi-modal sensing techniques as a solution.

This study aims to investigate the use of multi-modal sensor approach to control a robotic prosthetic hand by investigating the sparsely studied sensing mechanism called Force Myography (FMG) as a synergist to the conventional technique of sEMG. FMG uses pressure sensors on the surface of a limb to detect the volumetric changes in the underlying musculotendinous complex. This paper presents a custom prosthetic prototype instrumented with sEMG and FMG sensors and tested by a participant with a transradial amputation. Results demonstrate that this multi-sensor approach has the potential to be a valid HMI for prosthesis control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Timemy, A., Khushaba, R., Bugmann, G., Escudero, J.: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 650–661 (2015). doi:10.1109/TNSRE.2015.2445634

    Article  Google Scholar 

  • Amft, O., Junker, H., Lukowicz, P., Tröster, G., Schuster, C.: Sensing muscle activities with body-worn sensors. In: Proceedings - BSN 2006: International Workshop on Wearable and Implantable Body Sensor Networks, vol. 2006, pp. 138–141. IEEE, Cambridge (2006). http://doi.org/10.1109/BSN.2006.48

  • Amsuss, S., Goebel, P.M., Jiang, N., Graimann, B., Paredes, L., Farina, D.: Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control. IEEE Trans. Biomed. Eng. 61(4), 1167–1176 (2014). doi:10.1109/TBME.2013.2296274

    Article  Google Scholar 

  • Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.-G.M., Elsig, S., Müller, H.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140053 (2014). doi:10.1038/sdata.2014.53

    Article  Google Scholar 

  • Atzori, M., Müller, H.: Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162 (2015). http://doi.org/10.3389/fnsys.2015.00162

  • Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007). doi:10.1080/03093640600994581

    Article  Google Scholar 

  • Castellini, C., Artemiadis, P., Wininger, M., Ajoudani, A., Alimusaj, M., Bicchi, A., Scheme, E.: Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front. Neurorobot. 8(AUG), Article no. 22(2014). http://doi.org/10.3389/fnbot.2014.00022

  • Cho, E., Chen, R., Merhi, L., Xiao, Z., Pousett, B., Menon, C.: Force myography to control robotic upper extremity prostheses: a feasibility study. Front. Bioeng. Biotechnol. 4(March), 1–12 (2016). doi:10.3389/fbioe.2016.00018

    Google Scholar 

  • Fang, Y., Hettiarachchi, N., Zhou, D., Liu, H.: Multi-modal sensing techniques for interfacing hand prostheses: a review. IEEE Sens. J. 15(11), 6065–6076 (2015). doi:10.1109/JSEN.2015.2450211

    Article  Google Scholar 

  • Li, N., Yang, D., Jiang, L., Liu, H., Cai, H.: Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. J. Bionic Eng. 9(1), 39–47 (2012). doi:10.1016/S1672-6529(11)60095-4

    Article  Google Scholar 

  • Merletti, R., Aventaggiato, M., Botter, A., Holobar, A., Marateb, H., Vieira, T.M.M.: Advances in surface EMG: recent progress in detection and processing techniques. Crit. Rev. Biomed. Eng. 38(4), 305–345 (2010). doi:10.1615/CritRevBiomedEng.v38.i4.10

    Article  Google Scholar 

  • Peerdeman, B., Boere, D., Witteveen, H., Huis in’t Veld, R., Hermens, H., Stramigioli, S., Misra, S.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48(6), 719 (2011). doi:10.1682/JRRD.2010.08.0161

    Article  Google Scholar 

  • Phillips, S.L., Craelius, W.: Residual kinetic imaging: a versatile interface for prosthetic control. Robotica 23(3), 277–282 (2005). doi:10.1017/S0263574704001298

    Article  Google Scholar 

  • Radmand, A., Scheme, E., Englehard, K.: High resolution muscle pressure mapping for upper limb prosthetic control. In: Proceeding of MEC - Myoelectric Control Symposium, 19–22 August, pp. 189–193 (2014a)

    Google Scholar 

  • Rasouli, M., Ghosh, R., Lee, W.W., Thakor, N.V, Kukreja, S.: Stable force-myographic control of a prosthetic hand using incremental learning. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4828–4831. IEEE (2015). http://doi.org/10.1109/EMBC.2015.7319474

  • Ravindra, V., Castellini, C.: A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front. Neurorobot. 8(October), 1–10 (2014). doi:10.3389/fnbot.2014.00024

    Google Scholar 

  • Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6), 643 (2011). doi:10.1682/JRRD.2010.09.0177

    Article  Google Scholar 

  • Scheme, E.J., Hudgins, B.S., Englehart, K.B.: Confidence-based rejection for improved pattern recognition myoelectric control. IEEE Trans. Biomed. Eng. 60(6), 1563–1570 (2013). doi:10.1109/TBME.2013.2238939

    Article  Google Scholar 

  • Wininger, M., Kim, N.-H., Craelius, W.: Pressure signature of forearm as predictor of grip force. J. Rehabil. Res. Dev. 45(6), 883–892 (2008). doi:10.1682/JRRD.2007.11.0187

    Article  Google Scholar 

  • Wirta, R.W., Taylor, D.R., Wirta, R.W., Wirta, R.W., Finley, F.R.: Pattern-recognition arm prothesis: a historical perspective—a final report. Nonr 4292, 1–28 (1963)

    Google Scholar 

  • Xiong, Y., Quek, F.: Hand motion gesture frequency properties and multimodal discourse analysis. Int. J. Comput. Vis. 69(3), 353–371 (2006)

    Article  Google Scholar 

  • Yang, D., Jiang, L., Huang, Q., Liu, R., Liu, H.: Experimental study of an EMG-controlled 5-DOF anthropomorphic prosthetic hand for motion restoration. J. Intell. Robot. Syst. 76(3–4), 427–441 (2014). doi:10.1007/s10846-014-0037-6

    Article  Google Scholar 

  • Zhang, H., Zhao, Y., Yao, F., Xu, L., Shang, P., Li, G.: An adaptation strategy of using LDA classifier for EMG pattern recognition. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, vol. 2013, pp. 4267–4270. IEEE (2013). http://doi.org/10.1109/EMBC.2013.6610488

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ghataurah, J., Ferigo, D., Merhi, LK., Pousett, B., Menon, C. (2017). A Multi-sensor Approach for Biomimetic Control of a Robotic Prosthetic Hand. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics