Skip to main content

3D Protein-Structure-Oriented Discovery of Clinical Relation Across Chronic Lymphocytic Leukemia Patients

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia with still unclear etiology. Indications of antigenic pressure have been hinted, using sequence and structure-based reasoning. The accuracy of such approaches, and in particular of the ones derived from 3D models obtained from the patients’ antibody amino acid sequences, is intimately connected to both the reliability of the models and the quality of the methods used to compare and group them. The proposed work provides a sophisticated method for the classification of CLL patients based on clustering the amino acid sequences of the clonotypic B-cell receptor immunoglobulin, which is the ideal clone-specific marker, critical for clonal behavior and patient outcome. A novel CLL patient clustering method is hereby proposed, combining bioinformatics methods with the extraction of 3D object descriptors, used in machine learning applications. The proposed methodology achieved an efficient and highly informative grouping of CLL patients in accordance to their biological and clinical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webb, B., Sali, A.: Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics. John Wiley & Sons, Inc., (2002)

    Google Scholar 

  2. Skwark, M.J., et al.: Improved contact predictions using the recognition of protein like contact patterns. PLoS Comput. Biol. 10(11), e1003889 (2014)

    Article  Google Scholar 

  3. Marcatili, P., et al.: Automated clustering analysis of immunoglobulin sequences in chronic lymphocytic leukemia based on 3D structural descriptors. Blood 128(22), 4365 (2016)

    Google Scholar 

  4. Marcatili, P., et al.: Antibody structural modeling with prediction of immunoglobulin structure (PIGS). Nat. Protoc. 9(12), 2771–2783 (2014)

    Article  Google Scholar 

  5. Agathangelidis, A., et al.: Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 119(19), 4467 (2012)

    Article  Google Scholar 

  6. Zhang, Y.: I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40 (2008)

    Article  Google Scholar 

  7. Liao, S., Jain, A.K., Li, S.Z.: Partial face recognition: alignment-free approach. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1193–1205 (2013)

    Article  Google Scholar 

  8. Greene, L.H., et al.: The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res. 35(Database issue), D191–D197 (2007)

    Google Scholar 

  9. Andreeva, A., et al.: Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36(Database issue), D419–D425 (2008)

    Google Scholar 

  10. Holm, L., Sander, C.: The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 22(17), 3600–3609 (1994)

    Google Scholar 

  11. Finn, R.D., et al.: The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1), D179–D185 (2016)

    Article  Google Scholar 

  12. Blackburne, B.P., Whelan, S.: Class of multiple sequence alignment algorithm affects genomic analysis. Mol. Biol. Evol. 30(3), 642–653 (2013)

    Article  Google Scholar 

  13. Larkin, M.A., et al.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21), 2947–2948 (2007)

    Article  Google Scholar 

  14. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5, 113 (2004)

    Article  Google Scholar 

  15. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013)

    Article  Google Scholar 

  16. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

    Article  Google Scholar 

  17. Ortiz, A.R., Strauss, C.E., Olmea, O.: MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 11(11), 2606–2621 (2002)

    Article  Google Scholar 

  18. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31(13), 3370–3374 (2003)

    Article  Google Scholar 

  19. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J. Mol. Biol. 346(4), 1173–1188 (2005)

    Article  Google Scholar 

  20. Herbert, A., Sternberg, M.J.E.: MaxCluster–a tool for protein structure comparison and clustering (2014). http://www.sbg.bio.ic.ac.uk/~maxcluster

  21. Aung, Z., Tan, K.-L.: MatAlign: precise protein structure comparison by matrix alignment. J. Bioinf. Comput. Biol. 04(06), 1197–1216 (2006)

    Article  Google Scholar 

  22. MartĂ­nez, L., Andreani, R., MartĂ­nez, J.M.: Convergent algorithms for protein structural alignment. BMC Bioinf. 8(1), 306 (2007)

    Article  Google Scholar 

  23. Krissinel, E., Henrick, K.: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Sect. D 60(12 Part 1), 2256–2268 (2004)

    Article  Google Scholar 

  24. Pandit, S.B., Skolnick, J.: Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score. BMC Bioinf. 9, 531 (2008)

    Article  Google Scholar 

  25. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, ICRA 2009 (2009)

    Google Scholar 

  26. Ryslik, G., Yuwei C., and Hongyu Z. SpacePAC: identifying mutational clusters in 3D protein space using simulation (2013)

    Google Scholar 

  27. Messih, M.A., et al.: Improving the accuracy of the structure prediction of the third hypervariable loop of the heavy chains of antibodies. Bioinformatics 30(19), 2733–2740 (2014)

    Article  Google Scholar 

  28. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic acids res. 33(7), 2302–2309 (2005)

    Article  Google Scholar 

  29. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins: Struct., Funct., Bioinf. 57(4), 702–710 (2004)

    Article  Google Scholar 

  30. Louchet, H., Kuzmin, K., Richter, A.: Frequency, phase, and polarization-tracking algorithms for arbitrary four-dimensional signal constellations. In: SPIE OPTO, International Society for Optics and Photonics, pp. 900907–900907 (2013)

    Google Scholar 

  31. Rusu, R.B.: Semantic 3D object maps for everyday manipulation in human living environments. KI - Künstliche Intelligenz 24(4), 345–348 (2010)

    Article  Google Scholar 

  32. Tran, T.N., Drab, K., Daszykowski, M.: Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometr. Intell. Lab. Syst. 120, 92–96 (2013)

    Article  Google Scholar 

  33. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  34. Meila, M., Heckerman, D.: An experimental comparison of several clustering and initialization methods. arXiv preprint arXiv:1301.7401 (2013)

  35. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. PNAS 89(22), 10915–10919 (1992). PMC: 50453, PMID: 1438297

    Article  Google Scholar 

  36. Meyer, M.J., et al.: mutation3D: cancer gene prediction through atomic clustering of coding variants in the structural proteome. Hum. Mutat. 37(5), 447–456 (2016)

    Article  Google Scholar 

  37. Wohlkinger, W., Vincze, M.: Ensemble of shape functions for 3D object classification. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2987–2992. IEEE, December 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Mochament or Elias Kalamaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mochament, K. et al. (2017). 3D Protein-Structure-Oriented Discovery of Clinical Relation Across Chronic Lymphocytic Leukemia Patients. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics