Abstract
This paper presents a low-cost portable wireless system specifically designed to acquire both surface electromyography (sEMG) and accelerometer signals for healthcare applications, sport, and fitness activities. The system, consists of several ultralight wireless sensing nodes that acquire, amplify, digitize, and transmit the sEMG and accelerometer signals to one or more base stations through a 2.4 GHz radio link using a custom-made communication protocol designed on top of the IEEE 802.15.4 physical layer. Additionally, the system can be easily configured to capture and process many other biological signals such as the electrocardiographic (ECG) signal. Each base station is connected through a USB link to a control PC running a user interface software for viewing, recording, and analysing the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: A multi-class ECG beat classifier based on the truncated KLT representation. In: 2014 European Modelling Symposium, pp. 93–98, October 2014
Crippa, P., Curzi, A., Falaschetti, L., Turchetti, C.: Multi-class ECG beat classification based on a Gaussian mixture model of Karhunen-Loève transform. Int. J. Simul. Syst. Sci. Technol. 16(1), 2.1–2.10 (2015)
Bacà, A., Biagetti, G., Camilletti, M., Crippa, P., Falaschetti, L., Orcioni, S., Rossini, L., Tonelli, D., Turchetti, C.: CARMA: a robust motion artifact reduction algorithm for heart rate monitoring from PPG signals. In: 23rd European Signal Processing Conference, pp. 2696–2700, September 2015
Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: Analysis of the EMG signal during cyclic movements using multicomponent AM-FM decomposition. IEEE J. Biomed. Health Inform. 19(5), 1672–1681 (2015)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: An efficient technique for real-time human activity classification using accelerometer data. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. Smart Innovation, Systems and Technologies, vol. 56, pp. 425–434. Springer, Cham (2016)
Rodriguez-Martin, D., Samà, A., Perez-Lopez, C., Català, A., Cabestany, J., Rodriguez-Molinero, A.: SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 40(18), 7203–7211 (2013)
Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193–2203 (2013)
Torres-Huitzil, C., Nuno-Maganda, M.: Robust smartphone-based human activity recognition using a tri-axial accelerometer. In: 2015 IEEE 6th Latin American Symposium on Circuits Systems, pp. 1–4, February 2015
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)
Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 8th International Conference on Intelligent Environments, pp. 214–221, June 2012
Khan, A., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6, May 2010
Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)
Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft Comput. 37, 1018–1022 (2015)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Artifact reduction in photoplethysmography using Bayesian classification for physical exercise identification. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, Rome, Italy, pp. 467–474, February 2016
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: A rule based framework for smart training using sEMG signal. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol. 39, pp. 89–99. Springer, Heidelberg (2015)
Lee, S.Y., Koo, K.H., Lee, Y., Lee, J.H., Kim, J.H.: Spatiotemporal analysis of EMG signals for muscle rehabilitation monitoring system. In: 2013 IEEE 2nd Global Conference on Consumer Electronics, pp. 1–2, October 2013
Chang, K.M., Liu, S.H., Wu, X.H.: A wireless sEMG recording system and its application to muscle fatigue detection. Sensors 12(1), 489–499 (2012)
Pantelopoulos, A., Bourbakis, N.: A survey on wearable biosensor systems for health monitoring. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4887–4890, August 2008
Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Homomorphic deconvolution for MUAP estimation from surface EMG signals. IEEE J. Biomed. Health Inform. 21(2), 328–338 (2017)
Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Surface EMG fatigue analysis by means of homomorphic deconvolution. In: Conti, M., Madrid, N.M., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis. Lecture Notes in Electrical Engineering, vol. 392, pp. 173–188. Springer, Heidelberg (2016)
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Wireless surface electromyograph and electrocardiograph system on 802.15.4. IEEE Trans. Consum. Electron. 62(3), 258–266 (2016)
Nawab, S.H., Roy, S.H., Luca, C.J.D.: Functional activity monitoring from wearable sensor data. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 979–982, September 2004
Spulber, I., Georgiou, P., Eftekhar, A., Toumazou, C., Duffell, L., Bergmann, J., McGregor, A., Mehta, T., Hernandez, M., Burdett, A.: Frequency analysis of wireless accelerometer and EMG sensors data: towards discrimination of normal and asymmetric walking pattern. In: 2012 IEEE International Symposium on Circuits and Systems, pp. 2645–2648, May 2012
Ghasemzadeh, H., Jafari, R., Prabhakaran, B.: A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. IEEE Trans. Inf. Technol. Biomed. 14(2), 198–206 (2010)
Roy, S.H., Cheng, M.S., Chang, S.S., Moore, J., Luca, G.D., Nawab, S.H., Luca, C.J.D.: A combined sEMG and accelerometer system for monitoring functional activity in stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 17(6), 585–594 (2009)
Wang, Q., Chen, X., Chen, R., Chen, Y., Zhang, X.: Electromyography-based locomotion pattern recognition and personal positioning toward improved context-awareness applications. IEEE Trans. Syst. Man Cybern. Syst. 43(5), 1216–1227 (2013)
Zhang, X., Chen, X., Li, Y., Lantz, V., Wang, K., Yang, J.: A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(6), 1064–1076 (2011)
Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: An analog front-end for combined EMG/ECG wireless sensors. In: Conti, M., Madrid, N.M., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis. Lecture Notes in Electrical Engineering, vol. 392, pp. 215–224. Springer, Heidelberg (2016)
van Beelen, T.: EDFbrowser. http://www.teuniz.net/edfbrowser/. Accessed 30 June 2014
Hermens, H.J., Freriks, B.: European recommendations for surface electromyography [CDROM]. Roessingh Research and Development (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C. (2017). A Portable Wireless sEMG and Inertial Acquisition System for Human Activity Monitoring. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-56154-7_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56153-0
Online ISBN: 978-3-319-56154-7
eBook Packages: Computer ScienceComputer Science (R0)