Skip to main content

NIM: An HMC-Based Machine for Neuron Computation

  • Conference paper
  • First Online:
Applied Reconfigurable Computing (ARC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10216))

Included in the following conference series:

Abstract

Neuron Network simulation has arrived as a methodology to help one solve computational problems by mirroring behavior. However, to achieve consistent simulation results, large sets of workloads need to be evaluated. In this work, we present a neural in-memory simulator capable of executing deep learning applications inside 3D-stacked memories. With the reduction of data movement and by including a simple accelerator layer near to memory, our system was able to overperform traditional multi-core devices, while reducing overall system energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Gruijl, J.R., Bazzigaluppi, P., de Jeu, M.T., De Zeeuw, C.I.: Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput. Biol. 8(12), e1002814 (2012)

    Article  Google Scholar 

  2. Hines, M., Kumar, S., SchĂ¼rmann, F.: Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci. 5, 49 (2011)

    Article  Google Scholar 

  3. Wang, M., Yan, B., Hu, J., Li, P.: Simulation of large neuronal networks with biophysically accurate models on graphics processors. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 3184–3193, July 2011

    Google Scholar 

  4. Smaragdos, G., Isaza, S., van Eijk, M.F., Sourdis, I., Strydis, C.: FPGA-based biophysically-meaningful modeling of olivocerebellar neurons. In: Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2014, pp. 89–98. ACM, New York (2014)

    Google Scholar 

  5. Zenke, F., Gerstner, W.: Limits to high-speed simulations of spiking neural networks using general-purpose computers. Front. Neuroinform. 8, 76 (2014). http://journal.frontiersin.org/article/10.3389/fninf.2014.00076

    Article  Google Scholar 

  6. Balasubramonian, R., Chang, J., Manning, T., Moreno, J.H., Murphy, R., Nair, R., Swanson, S.: Near-data processing: insights from a MICRO-46 workshop. IEEE Micro 34(4), 36–42 (2014)

    Article  Google Scholar 

  7. Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification Rev. 2.0 (2013). http://www.hybridmemorycube.org/

  8. Lee, D.U., Hong, S., et al.: 25.2 a 1.2v 8GB 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 432–433, February 2014

    Google Scholar 

  9. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52(1), 25–71 (1990)

    Article  Google Scholar 

  10. Izhikevich, E.M.: Simple model of spiking neurons. Trans. Neur. Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  11. Alves, M.A.Z., Diener, M., Santos, P.C., Carro, L.: Large vector extensions inside the HMC. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1249–1254, March 2016

    Google Scholar 

  12. Santos, P.C., Oliveira, G.F., Tome, D.G., Alves, M.A.Z., Almeida, E.C., Carro, L.: Operand size reconfiguration for big data processing in memory. In: 2017 Design, Automation Test in Europe Conference Exhibition (DATE), March 2017

    Google Scholar 

  13. Alves, M.A.Z., Diener, M., Moreira, F.B., Villavieja, C., Navaux, P.O.A.: Sinuca: a validated micro-architecture simulator. In: High Performance Computation Conference (2015)

    Google Scholar 

  14. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: The McPAT framework for multicore and manycore architectures: simultaneously modeling power, area, and timing. ACM Trans. Archit. Code Optim. (TACO) 10(1), 5 (2013)

    Google Scholar 

  15. Sakai, K., Sajda, P., Yen, S.-C., Finkel, L.H.: Coarse-grain parallel computing for very large scale neural simulations in the NEXUS simulation environment. Computers in Biology and Medicine, vol. 27(4), 257–266 (1997)

    Article  Google Scholar 

  16. Zhang, Y., Mcgeehan, J.P., Regan, E.M., Kelly, S., Nunez-Yanez, J.L.: Biophysically accurate foating point neuroprocessors for reconfigurable logic. IEEE Transact. Comput. 62(3), 599–608 (2013)

    Article  Google Scholar 

  17. Beuler, M., Tchaptchet, A., Bonath, W., Postnova, S., Braun, H.A.: Real-time simulations of synchronization in a conductance-based neuronal network with a digital FPGA hardware-core. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7552, pp. 97–104. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33269-2_13

    Chapter  Google Scholar 

  18. Xu, L., Zhang, D.P., Jayasena, N.: Scaling deep learning on multiple in-memory processors. In: WoNDP: 3rd Workshop on Near-Data Processing (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo F. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oliveira, G.F., Santos, P.C., Alves, M.A.Z., Carro, L. (2017). NIM: An HMC-Based Machine for Neuron Computation. In: Wong, S., Beck, A., Bertels, K., Carro, L. (eds) Applied Reconfigurable Computing. ARC 2017. Lecture Notes in Computer Science(), vol 10216. Springer, Cham. https://doi.org/10.1007/978-3-319-56258-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56258-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56257-5

  • Online ISBN: 978-3-319-56258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics