Skip to main content

Doppler Elaboration for Vibrations Detection Using Software Defined Radar

  • Conference paper
  • First Online:
Recent Advances in Information Systems and Technologies (WorldCIST 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 570))

Included in the following conference series:

Abstract

A Doppler elaboration based on a Software Defined Radar (SDRadar) system is proposed in this work as alternative to standard hardware architectures for vibrations detection. An SDRadar prototype, fully realized via software, is implemented to satisfy various frequency detection requirements, even in the presence of slow and small oscillations, by simply changing ‘real time’ the useful parameters (e.g. bandwidth and acquisition time). Experimental validations by a device able to produce a harmonic motion, are discussed to prove the proper detection capabilities of the proposed architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costanzo, S., Di Massa, G., Costanzo, A., Borgia, A., Papa, C., Alberti, G., Salzillo, G., Palmese, G., Califano, D., Ciofanello, L., Daniele, M., Facchinetti, C., Longo, F., Formaro, R.: Multimode/multifrequency low frequency airborne radar design. J. Electr. Comput. Eng. 2013, 1–9 (2013)

    Google Scholar 

  2. Costanzo, S., Venneri, F., Raffo, A., Di Massa, G., Corsonello, P.: Active reflectarray element with large reconfigurability frequency range. In: 9th European Conference on Antennas and Propagation, EuCAP 2015, Lisbon (2015)

    Google Scholar 

  3. Venneri, F., Costanzo, S., Di Massa, G., Borgia, A., Raffo, A.: Frequency agile radial-shaped varactor-loaded reflectarray cell. Radioengineering 25, 253–257 (2016)

    Article  Google Scholar 

  4. Costanzo, S., Venneri, F., Raffo, A., Di Massa, G., Corsonello, P.: Radial-shaped single varactor-tuned phasing line for active reflectarrays. IEEE Trans. Antennas Propag. 64, 3254–3259 (2016)

    Article  Google Scholar 

  5. Hum, S., Perruisseau-Carrier, J.: Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans. Antennas Propag. 62, 183–198 (2014)

    Article  Google Scholar 

  6. Venneri, F., Costanzo, S., Di Massa, G., Borgia, A., Corsonello, P., Salzano, M.: Design of a reconfigurable reflectarray based on a varactor tuned element. In: 6th European Conference on Antennas and Propagation, EuCAP 2012, Prague, pp. 2628–2631 (2012)

    Google Scholar 

  7. Jung, I., Roh, Y.: Design and fabrication of piezoceramic bimorph vibration sensors. Sens. Actuators A: Phys. 69, 259–266 (1998)

    Article  Google Scholar 

  8. Sumali, H., Meissner, K., Cudney, H.: A piezoelectric array for sensing vibration modal coordinates. Sens. Actuators A: Phys. 93, 123–131 (2001)

    Article  Google Scholar 

  9. Vogl, A., Wang, D., Storås, P., Bakke, T., Taklo, M., Thomson, A., Balgård, L.: Design process and characterisation of a high-performance vibration sensor for wireless condition monitoring. Sens. Actuators A: Phys. 153, 155–161 (2009)

    Article  Google Scholar 

  10. Peiner, E., Scholz, D., Schlachetzki, A., Hauptmann, P.: A micromachined vibration sensor based on the control of power transmitted between optical fibres. Sens. Actuators A: Phys. 65, 23–29 (1998)

    Article  Google Scholar 

  11. Conforti, G., Brenci, M., Mencaglia, A., Mignani, A.: Fiber optic vibration sensor for remote monitoring in high power electric machines. Appl. Opt. 28, 5158 (1989)

    Article  Google Scholar 

  12. Zook, J., Herb, W., Bassett, C., Stark, T., Schoess, J., Wilson, M.: Fiber-optic vibration sensor based on frequency modulation of light-excited oscillators. Sens. Actuators A: Phys. 83, 270–276 (2000)

    Article  Google Scholar 

  13. Jelic, M., Stupar, D., Dakic, B., Bajic, J., Slankamenac, M., Zivanov, M.: An intensiometric contactless vibration sensor with bundle optical fiber for real time vibration monitoring. In: IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, pp. 395–399 (2012)

    Google Scholar 

  14. Palmetshofer, W.: Contactless vibration measurement for condition monitoring. Asset Manag. Maint. J. 27, 45–47 (2016)

    Google Scholar 

  15. Pieraccini, M., Fratini, M., Parrini, F., Macaluso, G., Atzeni, C.: High-speed CW step-frequency coherent radar for dynamic monitoring of civil engineering structures. Electron. Lett. 40, 907 (2004)

    Article  Google Scholar 

  16. Grazzini, G., Pieraccini, M., Dei, D., Atzeni, C.: Simple microwave sensor for remote detection of structural vibration. Electron. Lett. 45, 567 (2009)

    Article  Google Scholar 

  17. Lin, J.: Non-invasive microwave measurement of respiration. Proc. IEEE. 63 (1975)

    Google Scholar 

  18. Lin, J.: Microwave sensing of physiological movement and volume change: a review. Bioelectromagnetics. 13, 557–565 (1992)

    Article  Google Scholar 

  19. Papi, F., Donati, N., Pieraccini, M.: Handy microwave sensor for remote detection of structural vibration. In: 7th European Workshop on Structural Health Monitoring, Nantes, pp. 451–456 (2014)

    Google Scholar 

  20. Gu, C., Inoue, T., Li, C.: Analysis and experiment on the modulation sensitivity of doppler radar vibration measurement. IEEE Microw. Wirel. Compon. Lett. 23, 566–568 (2013)

    Article  Google Scholar 

  21. Lohman, B., Boric-Lubecke, O., Lubecke, V., Ong, P., Sondhi, M.: A digital signal processor for Doppler radar sensing of vital signs. IEEE Eng. Med. Biol. Mag. 21, 161–164 (2002)

    Article  Google Scholar 

  22. Hafner, N., Lubecke, V.: Performance assessment techniques for Doppler radar physiological sensors. In: 31st Annual International conference of the IEEE EMBS, Minneapolis, pp. 4848–4851 (2009)

    Google Scholar 

  23. Costanzo, S., Spadafora, F., Borgia, A., Moreno, H., Costanzo, A., Di Massa, G.: High resolution software defined radar system for target detection. J. Electr. Comput. Eng. 2013, 1–7 (2013)

    MathSciNet  Google Scholar 

  24. Costanzo, S., Spadafora, F., Moreno, O., Scarcella, F., Di Massa, G.: Multiband software defined radar for soil discontinuities detection. J. Electr. Comput. Eng. 2013, 1–6 (2013)

    Google Scholar 

  25. Zhang, H., Li, L., Wu, K.: 24 GHz software-defined radars system for automotive applications. In: European Conference on Wireless Technologies, Munich, pp. 138–141 (2007)

    Google Scholar 

  26. Costanzo, S., Massa, G., Costanzo, A., Borgia, A., Raffo, A., Viggiani, G., Versace, P.: Software-defined radar system for landslides monitoring. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Teixeira, M.M. (eds.) New Advances in Information Systems and Technologies. AISC, vol. 445, pp. 325–331. Springer, Cham (2016). doi:10.1007/978-3-319-31307-8_34

    Chapter  Google Scholar 

  27. Costanzo, S., et al.: Low-cost radars integrated into a landslide early warning system. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contributions in Information Systems and Technologies. AISC, vol. 354, pp. 11–19. Springer, Cham (2015). doi:10.1007/978-3-319-16528-8_2

    Google Scholar 

  28. Xiao, Y., Lin, J., Boric-Lubecke, O., Lubecke, M.: Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band. IEEE Trans. Microw. Theory Tech. 54, 2023–2032 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Costanzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Raffo, A., Costanzo, S. (2017). Doppler Elaboration for Vibrations Detection Using Software Defined Radar. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-56538-5_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56538-5_103

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56537-8

  • Online ISBN: 978-3-319-56538-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics