Skip to main content

Beyond Pairs: Generalizing the Geo-dipole for Quantifying Spatial Patterns in Geographic Fields

  • Conference paper
  • First Online:
Societal Geo-innovation (AGILE 2017)

Abstract

With their increasing availability and quantity, remote sensing images have become an invaluable data source for geographic research and beyond. The detection and analysis of spatial patterns from such images and other kinds of geographic fields, constitute a core aspect of Geographic Information Science. Per-cell analysis, where one cell’s characteristics are considered (geo-atom), and interaction-based analysis, where pairwise spatial relationships are considered (geo-dipole), have been widely applied to discover patterns. However, both can only characterize simple spatial patterns, such as global (overall) statistics, e.g., attribute average, variance, or pairwise auto-correlation. Such statistics alone cannot capture the full complexity of urban or natural structures embedded in geographic fields. For example, empirical (sample) correlation functions established from visually different patterns may have similar shapes, sills, and ranges. Higher-order analyses are therefore required to address this shortcoming. This work investigates the necessity and feasibility of extending the geo-dipole to a new construct, the geo-multipole, in which attribute values at multiple (more than two) locations are simultaneously considered for uncovering spatial patterns that cannot be extracted otherwise. We present experiments to illustrate the advantage of the geo-multipole over the geo-dipole in terms of quantifying spatial patterns in geographic fields. In addition, we highlight cases where two-point measures of spatial association alone are not sufficient to describe complex spatial patterns; for such cases, the geo-multipole and multiple-point (geo)statistics provide a richer analytical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mgstat.sourceforge.net/.

References

  • Atkinson PM, Lewis P (2000) Geostatistical classification for remote sensing: an introduction. Comput Geosci 26(4):361–371

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for Remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16

    Article  Google Scholar 

  • Blaschke T, Hay GJ, Kelly M, Lang S, Hofmann P, Addink E, Feitosa RQ, van der Meer F, van der Werff H, van Coillie F et al (2014) Geographic object-based image analysis-towards a new paradigm. ISPRS J Photogramm Remote Sens 87:180–191

    Article  Google Scholar 

  • Bourgault G, Marcotte D, Legendre P (1992) The multivariate (co) variogram as a spatial weighting function in classification methods. Math Geol 24(5):463–478

    Article  Google Scholar 

  • Carr JR (1996) Spectral and textural classification of single and multiple band digital images. Comput Geosci 22(8):849–865

    Article  Google Scholar 

  • Carr JR, De Miranda FP (1998) The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Trans Geosci Remote Sens 36(6):1945–1952

    Article  Google Scholar 

  • Ceccarelli T, Smiraglia D, Bajocco S, Rinaldo S, De Angelis A, Salvati L, Perini L (2013) Land cover data from landsat single-date imagery: an approach integrating pixel-based and object-based classifiers. Eur J Remote Sens 46:699–717

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  • Couclelis H (2010) Ontologies of geographic information. Int J Geogr Inf Sci 24(12):1785–1809

    Article  Google Scholar 

  • Cova TJ, Goodchild MF (2002) Extending geographical representation to include fields of spatial objects. Int J Geogr Inf Sci 16(6):509–532

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data: wiley series in probability and statistics, vol 15. Wiley-Interscience, New York, pp 105–209

    Google Scholar 

  • Fisher P (1997) The pixel: a snare and a delusion. Int J Remote Sens 18(3):679–685

    Article  Google Scholar 

  • Ge Y (2013) Sub-pixel land-cover mapping with improved fraction images upon multiple-point simulation. Int J Appl Earth Obs Geoinf 22:115–126

    Article  Google Scholar 

  • Ge Y, Bai H (2010) Mps-based information extraction method for remotely sensed imagery: a comparison of fusion methods. Can J Remote Sens 36(6):763–779

    Article  Google Scholar 

  • Ge Y, Bai H (2011) Multiple-point simulation-based method for extraction of objects with spatial structure from remotely sensed imagery. Int J Remote Sens 32(8):2311–2335

    Article  Google Scholar 

  • Ge Y, Bai HX, Cheng Q (2008) New classification method for remotely sensed imagery via multiple-point simulation: experiment and assessment. J Appl Remote Sens 2(1):023537–023537

    Article  Google Scholar 

  • Goodchild MF (1992a) Geographical data modeling. Comput Geosci 18(4):401–408

    Article  Google Scholar 

  • Goodchild MF (1992b) Geographical information science. Int J Geogr Inf Syst 6(1):31–45

    Article  Google Scholar 

  • Goodchild MF, Egenhofer MJ, Kemp KK, Mark DM, Sheppard E (1999) Introduction to the varenius project. Int J Geogr Inf Sci 13(8):731–745

    Article  Google Scholar 

  • Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in gis. Int J Geogr Inf Sci 21(3):239–260

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press on Demand

    Google Scholar 

  • Guardiano FB, RM Srivastava (1993) Multivariate geostatistics: beyond bivariate moments. In Geostatistics Troia92. Springer, pp 133–144

    Google Scholar 

  • Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern modeling. Math Geosci 42(5):487–517

    Article  Google Scholar 

  • Jackson Q, Landgrebe DA (2002) Adaptive bayesian contextual classification based on markov random fields. IEEE Trans Geosci Remote Sens 40(11):2454–2463

    Article  Google Scholar 

  • Journel A, Zhang T (2006) The necessity of a multiple-point prior model. Math Geol 38(5):591–610

    Article  Google Scholar 

  • Kuhn W (2012) Core concepts of spatial information for transdisciplinary research. Int J Geogr Inf Sci 26(12):2267–2276

    Article  Google Scholar 

  • Kuhn W, Frank AU (1991) A formalization of metaphors and image-schemas in user interfaces. In: Cognitive and linguistic aspects of geographic space. Springer, pp. 419–434

    Google Scholar 

  • Li M, Zang S, Zhang B, Li S, Wu C et al (2014) A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur J Remote Sens 47:389–411

    Article  Google Scholar 

  • Liu Y, Goodchild MF, Guo Q, Tian Y, Wu L (2008) Towards a general field model and its order in GIS. Int J Geogr Inf Sci 22(6):623–643

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int. J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley

    Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11)

    Google Scholar 

  • Oliver M, Webster R (1989) A geostatistical basis for spatial weighting in multivariate classification. Math Geol 21(1):15–35

    Article  Google Scholar 

  • Ramstein G, Raffy M (1989) Analysis of the structure of radiometric remotely-sensed images. Int J Remote Sens 10(6):1049–1073

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press

    Google Scholar 

  • Rollet R, Benie G, Li W, Wang S, Boucher J (1998) Image classification algorithm based on the RBF neural network and k-means. Int J Remote Sens 19(15):3003–3009

    Article  Google Scholar 

  • Salembier P, Oliveras A, Garrido L (1998) Antiextensive connected operators for image and sequence processing. IEEE Trans Image Process 7(4):555–570

    Article  Google Scholar 

  • Settle J, Briggs S (1987) Fast maximum likelihood classification of remotely-sensed imagery. Int J Remote Sens 8(5):723–734

    Article  Google Scholar 

  • Strbelle S (2002) Conditional simulation of complex geological structures using multiple point geostatistics. Math Geol 34(1): 122Strbelle

    Google Scholar 

  • Strébelle S, Journel A (2000) Sequential simulation drawing structures from training images

    Google Scholar 

  • Strebelle SB, Journel AG et al (2001) Reservoir modeling using multiple-point statistics. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

    Google Scholar 

  • Tang Y, Jing L, Atkinson PM, Li H (2016) A multiple-point spatially weighted k-nn classifier for remote sensing. Int J Remote Sens 37(18):4441–4459

    Article  Google Scholar 

  • Voudouris V (2010) Towards a unifying formalisation of geographic representation: the object-field model with uncertainty and semantics. Int J Geogr Inf Sci 24(12):1811–1828

    Article  Google Scholar 

  • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80

    Article  Google Scholar 

  • Zhu R, Hu Y, Janowicz K, McKenzie G (2016) Spatial signatures for geographic feature types: examining gazetteer ontologies using spatial statistics. Transactions in GIS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhu, R., Kyriakidis, P.C., Janowicz, K. (2017). Beyond Pairs: Generalizing the Geo-dipole for Quantifying Spatial Patterns in Geographic Fields. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds) Societal Geo-innovation. AGILE 2017. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-56759-4_19

Download citation

Publish with us

Policies and ethics