Skip to main content

Subject-Specific Model of Knee Natural Motion: A Non-invasive Approach

  • Chapter
  • First Online:
Advances in Robot Kinematics 2016

Abstract

The capability to model human joint motion is a fundamental step towards the definition of effective treatments and medical devices, with an increasing request to adapt the devised models to the specificity of each subject. We present a new approach for the definition of subject-specific models of the knee natural motion. The approach is the result of a combination of two different techniques and exploits the advantages of both. It relays upon non invasive measurements based on which a kinematic model of the natural motion is built, suitable to be extended to the definition of static and dynamic models. Comparison of the model outcomes with in vitro measurements performed on one specimen shows promising results supporting the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belvedere, C., Ensini, A., Feliciangeli, A., Cenni, F., D’Angeli, V., Giannini, S., Leardini, A.: Geometrical changes of knee ligaments and patellar tendon during passive flexion. J. Biomech. 45(11), 1886–1892 (2012)

    Article  Google Scholar 

  2. Benjamin, M., Ralphs, J.R.: Fibrocartilage in tendons and ligaments-an adaptation to compressive load. J. Anat. 193(Pt 4), 481–494 (1998)

    Article  Google Scholar 

  3. Blankevoort, L., Huiskes, R., De Lange, A.: The envelope of passive knee joint motion. J. Biomech. 21(9), 705–720 (1988)

    Article  Google Scholar 

  4. Conconi, M., Leardini, A., Parenti-Castelli, V.: Joint kinematics from functional adaptation: A validation on the tibio-talar articulation. J. Biomech. 48(12), 2960–2967 (2015)

    Article  Google Scholar 

  5. Conconi, M., Parenti-Castelli, V.: A sound and efficient measure of joint congruence. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 228(9), 935–941 (2014)

    Article  Google Scholar 

  6. Eckstein, F., Hudelmaier, M., Putz, R.: The effects of exercise on human articular cartilage. J. Anat. 208, 491–512 (2006)

    Article  Google Scholar 

  7. Forlani, M., Sancisi, N., Conconi, M., Parenti-Castelli, V.: A new test rig for static and dynamic evaluation of knee motion based on a cable-driven parallel manipulator loading system. Meccanica (2015). doi:10.1007/s11012-015-0124-1

    Google Scholar 

  8. Frost, H.M.: An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains. Am. J. Hum. Biol. 11, 437–455 (1999)

    Article  Google Scholar 

  9. Grood, E.S., Stowers, S.F., Noyes, F.R.: Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J. Bone Joint Surg. Am. 70(1), 88–97 (1988)

    Article  Google Scholar 

  10. Grood, E.S., Suntay, W.J.: A joint coordinate systenf for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 135, 136–144 (1983)

    Article  Google Scholar 

  11. Harner, C.D., Baek, G.H., Vogrin, T.M., Carlin, G.J., Kashiwaguchi, S., Woo, S.L.: Quantitative analysis of human cruciate ligament insertions. Arthrosc. J. Arthrosc. Relat. Surg. 15(7), 741–749 (1999)

    Google Scholar 

  12. Hayashi, K.: Biomechanical studies of the remodeling of knee joint tendons and ligaments. J.Biomech. 29, 707–716 (1996)

    Article  Google Scholar 

  13. Heegaard, J.H., Beaupre, G.S., Carter, D.R.: Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J. Orthop. Res. 17, 509–517 (1999)

    Article  Google Scholar 

  14. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  15. Markolf, K.L., Mensch, J.S., Amstutz, H.C.: Stiffness and laxity of the knee-the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. Am. 58(5), 583–594 (1976)

    Article  Google Scholar 

  16. Masum, M.A., Pickering, M.R., Lambert, A.J., Scarvell, J.M., Smith, P.N.: A review: techniques for kinematic analysis of knee joints. In: Australian Biomedical Engineering Conference (ABEC) (2014)

    Google Scholar 

  17. Ottoboni, A., Parenti-Castelli, V., Sancisi, N., Belvedere, C., Leardini, A.: Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(9), 1121–1132 (2010)

    Article  Google Scholar 

  18. Parenti-Castelli, V., Di Gregorio, R.: Parallel mechanisms applied to the human knee passive motion simulation, pp. 333–344. Kluwer Academic Publishers, Pirano-Portoroz, Slovenia (2000)

    Google Scholar 

  19. Robling, A.G., Castillo, A.B., Turner, C.H.: Biomechanical and molecular regulation of bone remodeling. Ann. Rev. Biomed. Eng. 8, 455–498 (2006)

    Article  Google Scholar 

  20. Sancisi, N., Conconi, M., Parenti-Castelli, V.: Prediction of the subject-specific knee passive motion from non-invasive measurements. In: The 25th Congress of the International Society of Biomechanics - XXV ISB. Glasgow, UK (2015)

    Google Scholar 

  21. Sancisi, N., Parenti-Castelli, V.: A 1-dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45(4), 658–665 (2010)

    Article  MATH  Google Scholar 

  22. Sancisi, N., Parenti-Castelli, V.: A novel 3d parallel mechanism for the passive motion simulation of the patella-femur-tibia complex. Meccanica 46(1), 207–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sancisi, N., Parenti-Castelli, V.: On the role of passive structures in the knee loaded motion, pp. 1–8. Springer, Berlin (2012)

    Google Scholar 

  24. Wilson, D., Feikes, J., Zavatsky, A., O’Connor, J.: The components of passive knee movement are coupled to flexion angle. J. Biomech. 33(4), 465–473 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Conconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Conconi, M., Sancisi, N., Parenti-Castelli, V. (2018). Subject-Specific Model of Knee Natural Motion: A Non-invasive Approach. In: Lenarčič, J., Merlet, JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56802-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56802-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56801-0

  • Online ISBN: 978-3-319-56802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics