Skip to main content

The 2D Orientation Interpolation Problem: A Symmetric Space Approach

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 4))

Abstract

In this paper, we propose a novel construction of Bézier curves of two-dimensional (\(2\)D) orientations using the geometry of real projective plane \(\mathrm{\mathbb {R}P^{2}}\). Unlike the commonly adopted unit 2-sphere model \(S^{2}\), \(\mathrm{\mathbb {R}P^{2}}\) is naturally embedded in the \(3\)D special orthogonal group \(\mathrm{SO(3)}\). It is also a symmetric space that is equipped with a particular class of isometries called geodesic symmetry, which allows us to generate any geodesics using the exponential map of \(\mathrm{SO(3)}\). We implement the generated geodesics to construct Bézier curves for direction interpolation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bonev, I., Zlatanov, D., Gosselin, C.: Advantages of the modified Euler angles in the design and control of PKMs. In: 2002 Parallel Kinematic Machines International Conference, pp. 171–188. Citeseer (2002)

    Google Scholar 

  2. Crouch, P., Kun, G., Leite, F.S.: The de Casteljau algorithm on Lie groups and spheres. J. Dyn. Control Syst. 5(3), 397–429 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crouch, P., Leite, F.S.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1(2), 177–202 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dietz, R., Hoschek, J., Jüttler, B.: An algebraic approach to curves and surfaces on the sphere and on other quadrics. Comput. Aided Geom. Des. 10(3), 211–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80. Academic press, Dublin (1979)

    Google Scholar 

  6. Kang, I., Park, F.: Cubic spline algorithms for orientation interpolation. Int. J. Numer. Methods Eng. 46(1), 45–64 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, M.J., Kim, M.S., Shin, S.Y.: A general construction scheme for unit quaternion curves with simple high order derivatives. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–376. ACM, New York (1995)

    Google Scholar 

  8. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963)

    Google Scholar 

  9. Krakowski, K.A.: Envelopes of splines in the projective plane. IMA J. Math. Control Inf. 22(2), 171–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Loos, O.: Symmetric Spaces. Benjamin (1969)

    Google Scholar 

  11. Meier, D.: Invariant higher-order variational problems: Reduction, geometry and applications. Ph.D. thesis, Imperial College London (2013)

    Google Scholar 

  12. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC press, Boca Raton (1994)

    Google Scholar 

  13. Neubauer, M., Müller, A.: Smooth orientation path planning with quaternions using B-splines. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2087–2092 (2015)

    Google Scholar 

  14. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inf. 6(4), 465–473 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, F., Ravani, B.: Bézier curves on Riemannian manifolds and Lie groups with kinematics applications. J. Mech. Des. 117(1), 36–40 (1995)

    Article  Google Scholar 

  16. Park, F.C., Ravani, B.: Smooth invariant interpolation of rotations. ACM Trans. Graph. (TOG) 16(3), 277–295 (1997)

    Article  Google Scholar 

  17. Paul, R.P., Stevenson, C.N.: Kinematics of robot wrists. Int. J. Robot. Res. 2(1), 31–38 (1983)

    Article  Google Scholar 

  18. Polpitiya, A.D., Dayawansa, W.P., Martin, C.F., Ghosh, B.K.: Geometry and control of human eye movements. IEEE Trans. Autom. Control 52(2), 170–180 (2007)

    Article  MathSciNet  Google Scholar 

  19. Röschel, O.: Rational motion design-a survey. Comput. Aided Des. 30(3), 169–178 (1998)

    Article  MATH  Google Scholar 

  20. Selig, J.M.: Geometric Fundamentals of Robotics. Springer Science & Business Media, Berlin (2005)

    Google Scholar 

  21. Shoemake, K.: Animating rotation with quaternion curves. In: ACM SIGGRAPH Computer Graphics, vol. 19, pp. 245–254. ACM, New York (1985)

    Google Scholar 

  22. Wu, Y., Li, Z., Shi, J.: Geometric properties of zero-torsion parallel kinematics machines. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2307–2312. IEEE, New York (2010)

    Google Scholar 

  23. Wu, Y., Löwe, H., Carricato, M., Li, Z.: Inversion symmetry of the euclidean group: Theory and application to robot kinematics. IEEE Trans. Robot. 32(2), 312–326 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The first and third author gratefully acknowledge the PRIN 2012 grant No. 20124SM Z88 and the MANET FP7-PEOPLE-ITN grant No. 607643. The second author acknowledges partial support of this work by the Austrian COMET-K2 program of the Linz Center of Mechatronics (LCM). This work is also in partial fulfillment to China National Natural Science Foundation Grant No.51375413, which supported Dr. Wu when he was working at HKUST and HKUST SRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wu, Y., Müller, A., Carricato, M. (2018). The 2D Orientation Interpolation Problem: A Symmetric Space Approach. In: Lenarčič, J., Merlet, JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56802-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56802-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56801-0

  • Online ISBN: 978-3-319-56802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics