Skip to main content

Semantic Interoperability at Big-Data Scale with the open62541 OPC UA Implementation

  • Conference paper
  • First Online:
Interoperability and Open-Source Solutions for the Internet of Things (InterOSS-IoT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10218))

Included in the following conference series:

  • 1891 Accesses

Abstract

The OPC Unified Architecture (OPC UA) is a protocol for Ethernet-based communication in industrial settings. At its core, OPC UA defines a set of services for interaction with a server-side information model that combines object-orientation with semantic technologies. Additional companion specifications use the OPC UA meta-model to define domain-specific modeling concepts for semantic interoperability. The open62541 project is an open source implementation of the OPC UA standard. In this work, we give a short introduction to the core concepts of OPC UA and how the measures taken to scale OPC UA to Big-Data scale reflect in the architecture of open62541.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The measurement code is accessible under https://github.com/open62541/open62541/blob/0.2/examples/server_readspeed.c.

References

  1. Arai, T., Aiyama, Y., Maeda, Y., Sugi, M., Ota, J.: Agile assembly system by ‘plug and produce’. CIRP Ann. Manuf. Technol. 49(1), 1–4 (2000)

    Article  Google Scholar 

  2. Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)

    Article  Google Scholar 

  3. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  4. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-level implementations of read-copy update. IEEE Trans. Parallel Distrib. Syst. 23(2), 375–382 (2012)

    Article  Google Scholar 

  5. Frey, C.W.: Diagnosis and monitoring of complex industrial processes based on self-organizing maps and watershed transformations. In: 2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp. 87–92. IEEE (2008)

    Google Scholar 

  6. Gaj, P., Jasperneite, J., Felser, M.: Computer communication within industrial distributed environment - a survey. IEEE Trans. Ind. Inf. 9(1), 182–189 (2013)

    Article  Google Scholar 

  7. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of memory reclamation for lockless synchronization. J. Parallel Distrib. Comput. 67(12), 1270–1285 (2007)

    Article  MATH  Google Scholar 

  8. Heiler, S.: Semantic interoperability. ACM Comput. Surv. (CSUR) 27(2), 271–273 (1995)

    Article  Google Scholar 

  9. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41(7), 33–38 (2008)

    Article  Google Scholar 

  10. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press, Boca Raton (2009)

    Google Scholar 

  11. IEC 62541. OPC Unified Architecture Part 1–10, Release 1.0 (2010)

    Google Scholar 

  12. McBride, B.: The resource description framework (RDF) and its vocabulary description language RDFS. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 51–65. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. McKenney, P.E.: Is parallel programming hard, and if so, what can you do about it? Technical report (2011). https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

  14. Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte, A.: Data-driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things for diagnosis and control. In: Proceedings of the 26th International Workshop on Principles of Diagnosis. ACM (2015)

    Google Scholar 

  15. Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., Cheriton, D.R.: Comparing the performance of web server architectures. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 231–243. ACM (2007)

    Google Scholar 

  16. Pfrommer, J., Stogl, D., Aleksandrov, K., Escaida Navarro, S., Hein, B., Beyerer, J.: Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems. at-Automatisierungstechnik 63(10), 790–800 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Pfrommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pfrommer, J. (2017). Semantic Interoperability at Big-Data Scale with the open62541 OPC UA Implementation. In: Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M. (eds) Interoperability and Open-Source Solutions for the Internet of Things. InterOSS-IoT 2016. Lecture Notes in Computer Science(), vol 10218. Springer, Cham. https://doi.org/10.1007/978-3-319-56877-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56877-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56876-8

  • Online ISBN: 978-3-319-56877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics