Abstract
Service business models expose industrial service providers to an increasing amount of uncertainties. In order to design profitable offerings, providers need to understand how uncertainties affect contract profitability. Both, access to data and algorithms are key requirements for accurate analyses.
While current research focuses on developing algorithms to derive insights from data that already exist, the need for strategically acquiring relevant data sets has been neglected so far. In this article, we develop a method for defining data acquisition strategies to improve uncertainty analyses for industrial service contracting. We explain how lacking observations, variables and quality of data affect uncertainty analyses, propose data acquisition strategies as a systematic plan to acquire relevant data and develop an approach for ranking acquisition strategies by measuring their acquisition effort and business benefit.
The method is applied in an industrial use case to demonstrate its benefit for assessing cost uncertainties in full-service repair contracts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Herzog, M., Meuris, D., Bender, B., Sadek, T.: The nature of risk management in the early phase of IPS\(^2\) design. Procedia CIRP 16, 223–228 (2014)
Erkoyuncu, J.A., Roy, R., Shehab, E., Kutsch, E.: An innovative uncertainty management framework to support contracting for product-service availability. J. Serv. Manag. 25(5), 603–638 (2014)
Stremersch, S., Wuyts, S., Frambach, R.T.: The purchasing of full-service contracts: an exploratory study within the industrial maintenance market. Ind. Market. Manag. 30(1), 1–12 (2001)
Hypko, P., Tilebein, M., Gleich, R.: Benefits and uncertainties of performance-based contracting in manufacturing industries: an agency theory perspective. J. Serv. Manag. 21(4), 460–489 (2010)
Erkoyuncu, J.A., Durugbo, C., Shehab, E., Roy, R., Parker, R., Gath, A., Howell, D.: Uncertainty driven service cost estimation for decision support at the bidding stage. Int. J. Prod. Res. 51(19), 5771–5788 (2013)
Huber, S., Spinler, S.: Pricing of full-service repair contracts. Eur. J. Operat. Res. 222(1), 113–121 (2012)
Baglee, D., Marttonen, S., Galar, D.: The need for Big Data collection and analyses to support the development of an advanced maintenance strategy. In: 11th International Conference on Data Mining, pp. 3–9. IEEE, Las Vegas (2015)
Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges moving forward. In: 46th Hawaii International Conference on System Sciences. pp. 995–1004. IEEE, Wailea (2013)
Benedettini, O., Neely, A., Swink, M.: Why do servitized firms fail? A risk-based explanation. Int. J. Operat. Prod. Manag. 35(6), 946–979 (2015)
Gebauer, H., Fleisch, E., Friedli, T.: Overcoming the service paradox in manufacturing companies. Eur. Manag. J. 23(1), 14–26 (2005)
Erkoyuncu, J.A., Roy, R., Shehab, E., Wardle, P.: Uncertainty challenges in service cost estimation for product-service systems in the aerospace and defence industries. In: 1st CIRP Industrial Product-Service System (IPS\(^2\)) Conference, pp. 200–206. Cranfield University Press, Cranfield (2009)
Bolton, P., Dewatripont, M.: Contract Theory. MIT Press, Cambridge (2005)
Chesbrough, H., Rosenbloom, R.S.: The role of the business model in capturing value from innovation: evidence from Xerox Corporation’s technology spin-off companies. Ind. Corp. Change 11(3), 529–555 (2002)
Van Ostaeyen, J., Van Horenbeek, A., Pintelon, L., Duflou, J.R.: A refined typology of product-service systems based on functional hierarchy modeling. J. Clean. Prod. 51, 261–276 (2013)
Bamberg, G., Coenenberg, A.G., Krapp, M.: Betriebswirtschaftliche Entscheidungslehre, 15th edn. Vahlens Kurzlehrbücher, Vahlen, München, Germany (2012)
Knight, F.H.: Risk, Uncertainty, and Profit. Houghton Mifflin, Boston (1921)
Erkoyuncu, J.A., Roy, R., Shehab, E., Cheruvu, K.: Understanding service uncertainties in industrial product-service system cost estimation. Int. J. Adv. Manuf. Technol. 52(9–12), 1223–1238 (2011)
Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)
Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., et al.: State-of-the-art in product-service systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221(10), 1543–1552 (2007)
Schulte, J.K., Steven, M.: Risk management of industrial product-service systems (IPS2) – how to consider risk and uncertainty over the IPS2 lifecycle? In: Dornfeld, D.A., Linke, B.S. (eds.) 19th CIRP Conference on Life Cycle Engineering, pp. 37–42. Springer, Berkeley (2012)
Erkoyuncu, J.A., Durugbo, C., Roy, R.: Identifying uncertainties for industrial service delivery: a systems approach. Int. J. Prod. Res. 51(21), 6295–6315 (2013)
Sakao, T., Öhrwall Rönnbäck, A., Ölundh Sandström, G.: Uncovering benefits and risks of integrated product service offerings - using a case of technology encapsulation. J. Syst. Sci. Syst. Eng. 22(4), 421–439 (2013)
Schwabe, O., Shehab, E., Erkoyuncu, J.: Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation. Prog. Aerosp. Sci. 77, 1–24 (2015)
Bose, R.: Advanced analytics: opportunities and challenges. Ind. Manag. Data Syst 109(2), 155–172 (2009)
Klöpper, B., Schlake, J.C.: Aufbrechen der Datensilos-Big Data Forschungsfragen aus dem Bereich Industrial Analytics. Lecture Notes in Informatics - INFORMATIK 2014, pp. 79–81. German Informatics Society, Stuttgart, Germany (2014)
Koronios, A., Redman, T., Gao, J.: Internal data markets: the opportunity and first steps. In: 4th International Conference on Cooperation and Promotion of Information Resources in Science and Technology, pp. 127–130. IEEE, Beijing (2009)
Jess, T., Woodal, P., McFarlane, D.: A framework for identifying suitable cases for using market-based approaches in industrial data acquisition. In: 1st International Data and Information Management Conference, pp. 113–124. Library and Information Statistics Unit, Loughborough University, Loughborough (2014)
Durugbo, C., Erkoyuncu, J.A., Tiwari, A., Alcock, J.R., Roy, R., Shehab, E.: Data uncertainty assessment and information flow analysis for product-service systems in a library case study. Int. J. Serv. Operat. Informat. 5(4), 330–350 (2010)
Schmitz, B., Düffort, F., Satzger, G.: Managing uncertainty in industrial full service contracts: digital support for design and delivery. In: 18th IEEE Conference on Business Informatics, pp. 123–132. IEEE, Paris (2016)
Gitzel, R., Turrin, S., Maczey, S., Shaomin, W., Schmitz, B.: A data quality metrics hierarchy for reliability data. In: 9th IMA International Conference on Modeling in Industrial Maintenance and Reliability, pp. 1–6. Kent Academic Repository, London (2016)
Gitzel, R.: Data quality in time series data - an experience report. In: Proceedings of the 18th IEEE Conference on Business Informatics - Industrial Track, pp. 41–49. CEUR, Paris (2016)
Fromm, H., Habryn, F., Satzger, G.: Service analytics leveraging data across enterprise boundaries for competitive advantage. In: Bäumer, U., Kreutter, P., Messner, W. (eds.) Globalization of Professional Services, Chap. 13, pp. 139–149. Springer, Heidelberg (2012)
Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE: International Standard IEC 62264-1:2013 Enterprise-control system integration - Part 1: Models and Terminology. Beuth, Berlin (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Schmitz, B., Satzger, G., Gitzel, R. (2017). More Observations, More Variables or More Quality? - Data Acquisition Strategies to Enhance Uncertainty Analytics for Industrial Service Contracting. In: Za, S., Drăgoicea, M., Cavallari, M. (eds) Exploring Services Science. IESS 2017. Lecture Notes in Business Information Processing, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-56925-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-56925-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56924-6
Online ISBN: 978-3-319-56925-3
eBook Packages: Computer ScienceComputer Science (R0)