Abstract
Value creation with data science methodologies generates important insights. However, these insights do not systematically provide service value to customers. Therefore, we show a systematic approach to use data science for the process of service design. We develop a structure of data science methodologies in the dimensions of their potential to create service benefit. This enables the mapping of the value contribution of the data science tools on the different perspectives and phases of the service design process. Based on this mapping, a direct link can be established between the outcomes of the data science methodologies and the value drivers for the customer. The resulting new methodology allows the systematic value creation from insights generated by data science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Provost, F.P., Fawcett, T.: Data Science for Business. O’Reilly, Sebastopol (2013)
Siegel, E.: Predictive Analytics. Wiley, Hoboken (2016)
Lusch, F.L., Vargo, S.L.: Service-Dominant Logic. Cambridge University Press, Cambridge (2014)
Peters, C., Maglio, P., Badinelli, R., Harmon, R.R., Maull, R., Spohrer, J.C., et al.: Emerging digital frontiers for service innovation. Commun. Assoc. Inf. Syst. 39(1), 136–139 (2016)
Spohrer, J., Demirkan, H., Lyons, K.: Social value: a service science perspective. In: Kijima, K. (ed.) Service Systems Science. TSS, vol. 2, pp. 3–35. Springer, Tokyo (2015). doi:10.1007/978-4-431-54267-4_1
Loukides, M.: The Evolution of Data Products. O’Reilly, Sebastopol (2011)
Howard, J., Zwemer, M., Loukides, M.: Designing Great Data Products. O’Reilly, Sebastopol (2012)
Scherer, J.O., Kloeckner, A.P., Duarte Ribeiro, J.L., Pezzotta, G., Pirola, F.: Product-service system (PSS) design: using design thinking and business analytics to improve PSS design. In: Procedia CIRP, vol. 47, pp. 341–346. Elsevier, Amsterdam (2016)
Wang, B., Miao, Y., Zhao, H., Jin, J., Chen, Y.: A biclustering-based method for market segmentation using customer pain points. Eng. Appl. Artif. Intell. 47, 101–109 (2016)
Kwong, C.K., Huimin, J., Luo, X.G.: AI-based methodology of integrating affective design, engineering, and marketing for defining design specifications of new products. Eng. Appl. Artif. Intell. 47, 49–60 (2016)
Osterwalder, A., Pigneur, Y., Bernarda, G., Smith, A.: Value Proposition Design: How to Create Products and Services Customers Want. Wiley, Hoboken (2014)
Polaine, A., Løvlie, L., Reason, B.: Service Design: From Insight to Implementation. Rosenfeld Media, Brooklyn (2013)
Brenner, W., Uebernickel, F. (eds.): Design Thinking for Innovation Research and Practice. Springer, Cham (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Meierhofer, J., Meier, K. (2017). From Data Science to Value Creation. In: Za, S., Drăgoicea, M., Cavallari, M. (eds) Exploring Services Science. IESS 2017. Lecture Notes in Business Information Processing, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-56925-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-56925-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56924-6
Online ISBN: 978-3-319-56925-3
eBook Packages: Computer ScienceComputer Science (R0)