Skip to main content

Determining the Consistency of Resolved Triplets and Fan Triplets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10229))

Abstract

The \(\mathcal {R}^{+-} \mathcal {F}^{+-}\) Consistency problem takes as input two sets \(R^{+}\) and \(R^{-}\) of resolved triplets and two sets \(F^{+}\) and \(F^{-}\) of fan triplets, and asks for a distinctly leaf-labeled tree that contains all elements in \(R^{+} \cup F^{+}\) and no elements in \(R^{-} \cup F^{-}\) as embedded subtrees, if such a tree exists. This paper presents a detailed characterization of how the computational complexity of the problem changes under various restrictions. Our main result is an efficient algorithm for dense inputs satisfying \(R^{-} = \emptyset \) whose running time is linear in the size of the input and therefore optimal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bininda-Emonds, O.R.P.: The evolution of supertrees. TRENDS Ecol. Evol. 19(6), 315–322 (2004)

    Article  MATH  Google Scholar 

  3. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.: The delayed rise of present-day mammals. Nature 446(7135), 507–512 (2007)

    Google Scholar 

  4. Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1997)

    Google Scholar 

  5. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. J. Discrete Algorithms 8(1), 65–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Appl. Math. 158(11), 1136–1147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three taxon ML trees with variable rates across sites. Discrete Appl. Math. 155(6–7), 750–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12(1), 101–112 (1995)

    Article  MATH  Google Scholar 

  9. Jansson, J., Lingas, A., Lundell, E.-M.: The approximability of maximum rooted triplets consistency with fan triplets and forbidden triplets. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 272–283. Springer, Cham (2015). doi:10.1007/978-3-319-19929-0_23

  10. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)

    Google Scholar 

  11. Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  12. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. J. Comb. Optim. 3(2–3), 183–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring phylogenetic relationships avoiding forbidden rooted triplets. J. Bioinform. Comput. Biol. 4(1), 59–74 (2006)

    Article  Google Scholar 

  14. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jansson, J., Lemence, R.S., Lingas, A.: The complexity of inferring a minimally resolved phylogenetic supertree. SIAM J. Comput. 41(1), 272–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. Algorithmica 43(4), 293–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3), 489–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Semple, C., Daniel, P., Hordijk, W., Page, R.D.M., Steel, M.: Supertree algorithms for ancestral divergence dates and nested taxa. Bioinformatics 20(15), 2355–2360 (2004)

    Article  Google Scholar 

  21. Snir, S., Rao, S.: Using max cut to enhance rooted trees consistency. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 323–333 (2006)

    Article  Google Scholar 

  22. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9(1), 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sung, W.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton (2010)

    MATH  Google Scholar 

  24. Willson, S.J.: Constructing rooted supertrees using distances. Bull. Math. Biol. 66(6), 1755–1783 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique and Chromatic Number. Theory Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sylvain Guillemot and Avraham Melkman for some discussions related to the topic of this paper. J.J. was partially funded by The Hakubi Project at Kyoto University and KAKENHI grant number 26330014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jansson, J., Lingas, A., Rajaby, R., Sung, WK. (2017). Determining the Consistency of Resolved Triplets and Fan Triplets. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics