Abstract
The \(\mathcal {R}^{+-} \mathcal {F}^{+-}\) Consistency problem takes as input two sets \(R^{+}\) and \(R^{-}\) of resolved triplets and two sets \(F^{+}\) and \(F^{-}\) of fan triplets, and asks for a distinctly leaf-labeled tree that contains all elements in \(R^{+} \cup F^{+}\) and no elements in \(R^{-} \cup F^{-}\) as embedded subtrees, if such a tree exists. This paper presents a detailed characterization of how the computational complexity of the problem changes under various restrictions. Our main result is an efficient algorithm for dense inputs satisfying \(R^{-} = \emptyset \) whose running time is linear in the size of the input and therefore optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)
Bininda-Emonds, O.R.P.: The evolution of supertrees. TRENDS Ecol. Evol. 19(6), 315–322 (2004)
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.: The delayed rise of present-day mammals. Nature 446(7135), 507–512 (2007)
Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1997)
Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. J. Discrete Algorithms 8(1), 65–75 (2010)
Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Appl. Math. 158(11), 1136–1147 (2010)
Chor, B., Hendy, M., Penny, D.: Analytic solutions for three taxon ML trees with variable rates across sites. Discrete Appl. Math. 155(6–7), 750–758 (2007)
Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif. 12(1), 101–112 (1995)
Jansson, J., Lingas, A., Lundell, E.-M.: The approximability of maximum rooted triplets consistency with fan triplets and forbidden triplets. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 272–283. Springer, Cham (2015). doi:10.1007/978-3-319-19929-0_23
Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. J. Comb. Optim. 3(2–3), 183–197 (1999)
He, Y.J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring phylogenetic relationships avoiding forbidden rooted triplets. J. Bioinform. Comput. Biol. 4(1), 59–74 (2006)
Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)
Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)
Jansson, J., Lemence, R.S., Lingas, A.: The complexity of inferring a minimally resolved phylogenetic supertree. SIAM J. Comput. 41(1), 272–291 (2012)
Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. Algorithmica 43(4), 293–307 (2005)
Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)
Semple, C.: Reconstructing minimal rooted trees. Discrete Appl. Math. 127(3), 489–503 (2003)
Semple, C., Daniel, P., Hordijk, W., Page, R.D.M., Steel, M.: Supertree algorithms for ancestral divergence dates and nested taxa. Bioinformatics 20(15), 2355–2360 (2004)
Snir, S., Rao, S.: Using max cut to enhance rooted trees consistency. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 323–333 (2006)
Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9(1), 91–116 (1992)
Sung, W.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton (2010)
Willson, S.J.: Constructing rooted supertrees using distances. Bull. Math. Biol. 66(6), 1755–1783 (2004)
Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique and Chromatic Number. Theory Comput. 3(1), 103–128 (2007)
Acknowledgments
The authors would like to thank Sylvain Guillemot and Avraham Melkman for some discussions related to the topic of this paper. J.J. was partially funded by The Hakubi Project at Kyoto University and KAKENHI grant number 26330014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jansson, J., Lingas, A., Rajaby, R., Sung, WK. (2017). Determining the Consistency of Resolved Triplets and Fan Triplets. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-56970-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56969-7
Online ISBN: 978-3-319-56970-3
eBook Packages: Computer ScienceComputer Science (R0)