Abstract
While the rise of single-molecule sequencing systems has enabled an unprecedented rise in the ability to assemble complex regions of the genome, long segmental duplications in the genome still remain a challenging frontier in assembly. Segmental duplications are at the same time both gene rich and prone to large structural rearrangements, making the resolution of their sequences important in medical and evolutionary studies. Duplicated sequences that are collapsed in mammalian de novo assemblies are rarely identical; after a sequence is duplicated, it begins to acquire paralog-specific variants. In this paper, we study the problem of resolving the variations in multicopy, long segmental duplications by developing and utilizing algorithms for polyploid phasing. We develop two algorithms: the first one is targeted at maximizing the likelihood of observing the reads given the underlying haplotypes using discrete matrix completion. The second algorithm is based on correlation clustering and exploits an assumption, which is often satisfied in these duplications, that each paralog has a sizable number of paralog-specific variants. We develop a detailed simulation methodology and demonstrate the superior performance of the proposed algorithms on an array of simulated datasets. We measure the likelihood score as well as reconstruction accuracy, i.e., what fraction of the reads are clustered correctly. In both the performance metrics, we find that our algorithms dominate existing algorithms on more than 93% of the datasets. While the discrete matrix completion performs better on likelihood score, the correlation-clustering algorithm performs better on reconstruction accuracy due to the stronger regularization inherent in the algorithm. We also show that our correlation-clustering algorithm can reconstruct on average 7.0 haplotypes in 10-copy duplication datasets whereas existing algorithms reconstruct less than one copy on average.
M.J. Chaisson and S. Mukherjee—Joint first authorship.
S. Kannan and E.E. Eichler—Joint last authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguiar, D., Istrail, S.: Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics 29(13), i352–i360 (2013)
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM (JACM) 55(5), 23 (2008)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008)
Berger, E., Yorukoglu, D., Peng, J., Berger, B.: Haptree: a novel Bayesian framework for single individual polyplotyping using NGS data. PLoS Comput. Biol. 10(3), e1003502 (2014)
Berlin, K., Koren, S., Chin, C.-S., Drake, J.P., Landolin, J.M., Phillippy, A.M.: Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33(6), 623–630 (2015)
Bonizzoni, P., Dondi, R., Klau, G.W., Pirola, Y., Pisanti, N., Zaccaria, S.: On the minimum error correction problem for haplotype assembly in diploid and polyploid genomes. J. Comput. Biol. 23, 718–736 (2016)
Cai, C., Sanghavi, S., Vikalo, H.: Structured low-rank matrix factorization for haplotype assembly. J. Sel. Top. Sig. Process. 10(4), 647–657 (2016)
Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012)
Chaisson, M.J.: https://github.com/mchaisso/blasr
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 524–533. IEEE (2003)
Chen, Y., Kamath, G., Suh, C., Tse, D.: Community recovery in graphs with locality (2016). arXiv preprint arXiv:1602.03828
Das, S., Vikalo, H.: SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genom. 16(1), 4 (2015)
Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45198-3_1
Dempster, A.P.: Laird, N, M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)
Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al.: Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149(4), 912–922 (2012)
Eichler, E.E.: Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17(11), 661–669 (2001)
Emanuel, D., Fiat, A.: Correlation clustering – minimizing disagreements on arbitrary weighted graphs. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 208–220. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39658-1_21
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
Gordon, D., Huddleston, J., Chaisson, M.J.P., Hill, C.M., Kronenberg, Z.N., Munson, K.M., Malig, M., Raja, A., Fiddes, I., Hillier, L.W., et al.: Long-read sequence assembly of the gorilla genome. Science 352(6281), aae0344 (2016)
Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of 45h Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 665–674, ACM, New York (2013)
Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 39(11), 1361–1368 (2007)
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Phillippy, A.M.: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. bioRxiv, p. 071282 (2016)
Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity, and algorithms. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 182–193. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1_15
Motahari, A., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun sequencing: noisy reads are as good as noiseless reads (2013). arXiv preprint arXiv:1304.2798
Myers, E.W.: Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol. 2(2), 275–290 (1995)
Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 52–67. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44753-6_5
Patterson, M., Marschall, T., Pisanti, N., Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer, Cham (2014). doi:10.1007/978-3-319-05269-4_19
Pevzner, P.A.: Dna physical mapping and alternating Eulerian cycles in colored graphs. Algorithmica 13(1–2), 77–105 (1995)
Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001)
Puljiz, Z., Vikalo, H.: Decoding genetic variations: communications-inspired haplotype assembly. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 518–530 (2016)
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
Schwartz, R., et al.: Theory and algorithms for the haplotype assembly problem. Commun. Inf. Syst. 10(1), 23–38 (2010)
Seo, J.-S., Rhie, A., Lee, S., Sohn, M.-H., Kim, C.-U., Hastie, A., Cao, H., Yun, J.-Y., Kim, J., et al.: De novo assembly and phasing of a Korean human genome. Nature 538, 243 (2016)
Si, H., Vikalo, H., Vishwanath, S.: Haplotype assembly: an information theoretic view. In: 2014 IEEE Information Theory Workshop (ITW), pp. 182–186. IEEE (2014)
Stankiewicz, P., Lupski, J.R.: Genome architecture, rearrangements and genomic disorders. Trends Genet. 18(2), 74–82 (2002)
Steinberg, K.M., Graves-Lindsay, T., Schneider, V.A., Chaisson, M.J.P., Tomlinson, C., Huddleston, J.L., Minx, P., Kremitzki, M., Albrecht, D., Magrini, V., et al.: High-quality assembly of an individual of Yoruban descent. bioRxiv, p. 067447 (2016)
Usher, C.L., Handsaker, R.E., Esko, T., Tuke, M.A., Weedon, M.N., Hastie, A.R., Cao, H., Moon, J.E., Kashin, S., Fuchsberger, C., et al.: Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat. Genet. 47(8), 921–925 (2015)
Welling, M., Kurihara, K.: Bayesian k-means as a maximization-expectation algorithm (2007)
Acknowledgements
This work was supported, in part, by U.S. National Institutes of Health (NIH) grants 5R01HG002385-15 (E.E.E. and M.J.C.) and 5R01HG008164-02 (S.K. and S.M.). E.E.E. is an investigator of the Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix
After each gradient step, the resultant matrix is projected onto the box. The updates for A and B are as follows:
Then \( A_{ij}^{(t+1)} = {\left\{ \begin{array}{ll} 0, &{} \text {if } \tilde{A}^{(t+1)}_{ij} < 0 \\ \tilde{A}^{(t+1)}_{ij}, &{} \text {if } 0 \le \tilde{A}^{(t+1)}_{ij} \le 1 \\ 1, &{} \text {if } \tilde{A}^{(t+1)}_{ij} > 1 \end{array}\right. } \)
Then \( B_{ij}^{(t+1)} = {\left\{ \begin{array}{ll} -1, &{} \text {if } \tilde{B}^{(t+1)}_{ij} < -1 \\ \tilde{B}^{(t+1)}_{ij}, &{} \text {if } -1 \le \tilde{A}^{(t+1)}_{ij} \le 1 \\ 1, &{} \text {if } \tilde{A}^{(t+1)}_{ij} > 1 \end{array}\right. } \)
where \(f(\cdot )\) is the objective function. The projected gradient descent allows us to incorporate additional constraints on the problem as well. If we further enforce that the sum of each row of A equals 1, then we would have the projection as \(A_{ij}^{(t+1)} = \max \lbrace 0, \tilde{A}_{ij}^{(t+1)} - \nu _i \rbrace \) where \(\nu _i\) can be computed for each row i using the equality
We allow a maximum of 50 iteration steps for minimizing each of A and B, and 100 iteration steps for alternating minimization. We exit the iterations if the change in norm is insignificant (\(1e-02\)) or if the objective value change is below a tolerance (\(1e-04\)). The learning rate values have to be computed in order to ensure that gradient steps do not diverge. Our choices of learning rates have been
and
where \(C \in (0,1)\).
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chaisson, M.J., Mukherjee, S., Kannan, S., Eichler, E.E. (2017). Resolving Multicopy Duplications de novo Using Polyploid Phasing. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-56970-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56969-7
Online ISBN: 978-3-319-56970-3
eBook Packages: Computer ScienceComputer Science (R0)