Skip to main content

Enhanced WalkSAT with Variable Neighborhood Search for MAX-SAT Problems

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 15))

Included in the following conference series:

  • 1556 Accesses

Abstract

The maximum satisfiability problem which is known to be NP-hard problem plays a major role in both theoretical and applied computer science. Applying exact algorithms to such complex problems are doomed to fail when dealing with large optimization problems. This paper introduces an enhanced variant of the popular Walksat algorithm using a variable neighborhood structure model. This variant is based on one type of neighborhood with varying sizes. A set of industrial benchmark problem instances is used to test the effectiveness of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audemard, G., Simon, L: Predicting learnt clauses quality in modern SAT solvers. In: Twenty First International Conferences on Artificial Intelligence, IQ 2009 (2009)

    Google Scholar 

  2. Bouhmala, N.: A variable neighborhood search structure based-genetic algorithm for combinatorial optimization problems. Int. J. Hybrid Intell. Syst. Theory Appl. 15(2) (2016)

    Google Scholar 

  3. Bouhmala, N.: A multilevel learning automata for MAX-SAT. Int. J. Mach. Learn. Cybern. 6(6), 911–921 (2015). doi:10.1007/s13042-015-0355-4

    Article  Google Scholar 

  4. Bouhmala, N., Hjelmervik, K., Ivar Øvergaard, K.: A generalized variable neighborhood search for combinatorial optimization problems. Electron. Notes Discrete Math. 47, 45–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouhmala, N.: A multilevel memetic algorithm for large SAT-encoded problems. Evol. Comput. 20(4), 641–664 (2012)

    Article  Google Scholar 

  6. Bouhmala, N., Granmo, O.C.: Combining finite learning automata with GSAT for the satisfiability problem. Eng. Appl. Artif. Intell. 23(5), 715–726 (2010)

    Article  Google Scholar 

  7. Cai, S., Luo, C., Su. K.: CCASat: solver description. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, pages 1314 (2012)

    Google Scholar 

  8. Granmo, O., Bouhmala, N.: Solving the satisfiability problem using finite learning automata. Int. J. Comput. Sci. Appl. IV(III), 15–29 (2007). Special Issue on Natural Inspired Computation

    Google Scholar 

  9. Hu, B., Raidl, R.: Variable neighborhood descent with self-adaptive neighborhood-ordering. In: Cotta, C., Fernandez, A.J., Gallardo, J.E. (eds.) Proceedings of the 7th EU/Meeting on Adaptive, Self-Adaptive, and Multi-level Metaheuristics, Malaga, Spain (2006)

    Google Scholar 

  10. Jagiura, M., Ibaraki, T.: Efficient 2 and 3-flip neighborhood search algorithms for the MAX SAT: experimental evaluation. J. Heurist. 7, 423–442 (2001)

    Article  MATH  Google Scholar 

  11. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pp. 321–326 (1997)

    Google Scholar 

  12. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Prestwich, S.: Random walk with continuously smoothed variable weights. In: Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 3569, pp. 203–215 (2005)

    Google Scholar 

  14. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of AAAI94, pp. 337–343. MIT Press (1994)

    Google Scholar 

  15. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of AAA92, pp. 440–446. MIT Press (1992)

    Google Scholar 

  16. Tompkins, A.D., Hoos, H.: UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT, pp. 37–46 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Bouhmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bouhmala, N., Oselan, M., Brådland, Ø. (2018). Enhanced WalkSAT with Variable Neighborhood Search for MAX-SAT Problems. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-56994-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56994-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56993-2

  • Online ISBN: 978-3-319-56994-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics