Abstract
This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011–2015. We began right at the start of the Kinect\(^\mathrm{TM}\) revolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Editor: Zhuowen Tu.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For round 1: http://www.kaggle.com/c/GestureChallenge. For round 2: http://www.kaggle.com/c/GestureChallenge2.
- 2.
- 3.
- 4.
- 5.
- 6.
References
S. Ali, M. Shah, Human action recognition in videos using kinematic features and multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 32, 288–303 (2010)
J. Alon, V. Athitsos, Q. Yuan, S. Sclaroff, A unified framework for gesture recognition and spatiotemporal gesture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1685–1699 (2009)
M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, Human pose estimation: new benchmark and state of the art analysis, in CCVPR (IEEE, 2014)
J. Appenrodt, A. Al-Hamadi, M. Elmezain, B. Michaelis, Data gathering for gesture recognition systems based on mono color-, stereo color- and thermal cameras, in Proceedings of the 1st International Conference on Future Generation Information Technology, FGIT ’09, 2009, pp. 78–86. ISBN 978-3-642-10508-1
V. Athitsos, S. Sclaroff, Estimating hand pose from a cluttered image. IEEE Conf. Comput. Vis. Pattern Recognit. 2, 432–439 (2003)
V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, Q. Yuan, A. Thangali, The American Sign Language lexicon video dataset, in IEEE Workshop on Computer Vision and Pattern Recognition for Human Communicative Behavior Analysis (CVPR4HB), 2008
A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P.J.M. Havinga, Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey, in ARCS Workshops, ed. M. Beigl, F.J. Cazorla-Almeida, 2010, pp. 167–176. ISBN 978-3-8007-3222-7
L. Baraldi, F. Paci, G. Serra, L. Benini, R. Cucchiara, Gesture recognition in ego-centric videos using dense trajectories and hand segmentation, in Proceedings of the 10th IEEE Embedded Vision Workshop (EVW), Columbus, Ohio, June 2014
X. Baró, J. Gonzàlez, J. Fabian, M.A. Bautista, M. Oliu, H.J. Escalante, I. Guyon, S. Escalera, ChaLearn looking at people 2015 challenges: action spotting and cultural event recognition, in ChaLearn Looking at People, Computer Vision and Pattern Recognition, 2015
B. Bauer, H. Hienz, K.-F. Kraiss, Video-based continuous sign language recognition using statistical methods, in International Conference on Pattern Recognition, 2000, pp. 2463–2466
A.Y. Benbasat, J.A. Paradiso, Compact, configurable inertial gesture recognition, in CHI ’01: CHI ’01 Extended Abstracts on Human factors in Computing Systems (ACM Press, 2001), pp. 183–184. ISBN 1581133405
S. Berlemont, G. Lefebvre, S. Duffner, C. Garcia, Siamese neural network based similarity metric for inertial gesture classification and rejection, in Automatic Face and Gesture Recognition, 2015
V. Bloom, D. Makris, V. Argyriou. G3D: a gaming action dataset and real time action recognition evaluation framework, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 7–12
A.F. Bobick, J.W. Davis, The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
L. Bourdev, J. Malik, Poselets: body part detectors trained using 3d human pose annotations, in ICCV (IEEE, 2009), pp. 1365–1372
M. Brand, N. Oliver, A.P. Pentland, Coupled Hidden Markov Models for complex action recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1997, pp. 994–999
M. Caon, Y. Yong, J. Tscherrig, E. Mugellini, O. Abou Khaled, Context-aware 3D gesture interaction based on multiple Kinects, in The First International Conference on Ambient Computing, Applications, Services and Technologies, 2011, pp. 7–12. ISBN 978-1-61208-170-0
A. Chaudhary, J.L. Raheja, K. Das, S. Raheja, A survey on hand gesture recognition in context of soft computing. Adv. Comput. 133, 46–55 (2011)
F.S. Chen, C.M. Fu, C.L. Huang, Hand gesture recognition using a real-time tracking method and Hidden Markov Models. Image Video Comput. 21(8), 745–758 (2003)
M. Chen, G. AlRegib, B.-H. Juang, 6DMG: a new 6D motion gesture database, in Multimedia Systems Conference, 2012, pp. 83–88
C. Conly, P. Doliotis, P. Jangyodsuk, R. Alonzo, V. Athitsos, Toward a 3D body part detection video dataset and hand tracking benchmark, in Pervasive Technologies Related to Assistive Environments (PETRA), 2013
C. Conly, Z. Zhang, V. Athitsos, An integrated RGB-D system for looking up the meaning of signs, in Pervasive Technologies Related to Assistive Environments (PETRA), 2015
H. Cooper, R. Bowden, Learning signs from subtitles: a weakly supervised approach to sign language recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 2568–2574
H. Cooper, E.-J. Ong, N. Pugeault, R. Bowden, Sign language recognition using sub-units. J. Mach. Learn. Res. 13(7), 2205–2231 (2012)
A. Corradini, Dynamic time warping for off-line recognition of a small gesture vocabulary, in Recognition Analysis and Tracking of Faces and Gestures in Real-time Systems (RATFG-RTS), 2001, pp. 82–89
Y. Cui, J. Weng, Appearance-based hand sign recognition from intensity image sequences. Comput. Vis. Image Underst. 78(2), 157–176 (2000)
R. Cutler, M. Turk, View-based interpretation of real-time optical flow for gesture recognition, in Automatic Face and Gesture Recognition, 1998, pp. 416–421
A. Czabke, J. Neuhauser, T.C. Lueth, Recognition of interactions with objects based on radio modules, in International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2010
T.J. Darrell, I.A. Essa, A.P. Pentland, Task-specific gesture analysis in real-time using interpolated views. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1236–1242 (1996)
M. de La Gorce, D.J. Fleet, N. Paragios, Model-based 3D hand pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1793–1805 (2011)
K.G. Derpanis, M. Sizintsev, K.J. Cannons, R.P. Wildes, Action spotting and recognition based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 527–540 (2013)
P. Dreuw, T. Deselaers, D. Keysers, H. Ney, Modeling image variability in appearance-based gesture recognition, in ECCV Workshop on Statistical Methods in Multi-Image and Video Processing, 2006, pp. 7–18
S. Duffner, S. Berlemont, G. Lefebvre, C. Garcia, 3D gesture classification with convolutional neural networks, in The 39th International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014
S. Escalera, J. Gonzàlez, X. Baró, M. Reyes, I. Guyon, V. Athitsos, H.J. Escalante, L. Sigal, A. Argyros, C. Sminchisescu, R. Bowden, S. Sclaroff, Chalearn multi-modal gesture recognition 2013: grand challenge and workshop summary, in 15th ACM International Conference on Multimodal Interaction, 2013a, pp. 365–368
S. Escalera, J. Gonzàlez, X. Baró, M. Reyes, O. Lopés, I. Guyon, V. Athitsos, H.J. Escalante, Multi-modal gesture recognition challenge 2013: Dataset and results, in ChaLearn Multi-Modal Gesture Recognition Grand Challenge and Workshop, 15th ACM International Conference on Multimodal Interaction, 2013b
S. Escalera, X. Baro, J. Gonzalez, M. Bautista, M. Madadi, M. Reyes, V. Ponce, H.J. Escalante, J. Shotton, I. Guyon, ChaLearn looking at people challenge 2014: dataset and results, in ChaLearn Looking at People, European Conference on Computer Vision, 2014
M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)
S.R. Fanello, I. Gori, G. Metta, F. Odone, Keep it simple and sparse: real-time action recognition. J. Mach. Learn. Res. 14(9), 2617–2640 (2013)
A. Farhadi, D.A. Forsyth, R. White, Transfer learning in sign language, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007
V. Ferrari, M. Marin-Jimenez, A. Zisserman, Progressive search space reduction for human pose estimation, in CVPR, 2008
S. Fothergill, H. Mentis, P. Kohli, S. Nowozin, Instructing people for training gestural interactive systems, in SIGCHI Conference on Human Factors in Computing Systems, 2012, pp. 1737–1746
W.T. Freeman, M. Roth, Computer vision for computer games, in Automatic Face and Gesture Recognition, 1996, pp. 100–105
N. Gillian, J.A. Paradiso, The gesture recognition toolkit. J. Mach. Learn. Res. 15, 3483–3487 (2014)
A. Gorban, H. Idrees, Y.-G. Jiang, A. Roshan Zamir, I. Laptev, M. Shah, R. Sukthankar, THUMOS challenge: action recognition with a large number of classes (2015), http://www.thumos.info/
L. Gorelick, M. Blank, E. Shechtman, M. Irani, R. Basri, Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)
N. Goussies, S. Ubalde, M. Mejail, Transfer learning decision forests for gesture recognition. J. Mach. Learn. Res. 15, 3667–3690 (2014)
M. Gowing, A. Ahmadi, F. Destelle, D.S. Monaghan, N.E. O’Connor, K. Moran, Kinect vs. Low-Cost Inertial Sensing for Gesture Recognition. Lecture Notes in Computer Science, vol. 8325 (Springer, Berlin, 2014)
I. Guyon, V. Athitsos, P. Jangyodsuk, H.J. Escalante, B. Hamner, Results and analysis of the ChaLearn gesture challenge 2012, in Advances in Depth Image Analysis and Applications, ed. by X. Jiang, O.R.P. Bellon, D. Goldgof, T. Oishi, Lecture Notes in Computer Science, vol. 7854 (Springer, Berlin, 2013), pp. 186–204. ISBN 978-3-642-40302-6. doi:10.1007/978-3-642-40303-3_19
I. Guyon, V. Athitsos, P. Jangyodsuk, H.J. Escalante, The ChaLearn gesture dataset (CGD 2011). Mach. Vis. Appl. 25, 1929–1951 (2014)
A. Hernandez-Vela, N. Zlateva, A. Marinov, M. Reyes, P. Radeva, D. Dimov, S. Escalera, Graph cuts optimization for multi-limb human segmentation in depth maps, in IEEE Computer Vision and Pattern Recognition Conference, 2012
A. Hernandez-Vela, M.A. Bautista, X. Perez-Sala, V. Ponce, S. Escalera, X. Baro, O. Pujol, C. Angulo, Probability-based dynamic time warping and bag-of-visual-and-depth-words for human gesture recognition in RGB-D. Pattern Recogn. Lett. (2013). doi:10.1016/j.patrec.2013.09.009
A. Hernandez-Vela, M. Reyes, V. Ponce, S. Escalera, Grabcut-based human segmentation in video sequences. Sensors 12(1), 15376–15393 (2013b)
G. Hewes, Primate communication and the gestural origins of language. Curr. Antropol. 14, 5–24 (1973)
N.A. Ibraheem, R.Z. Khan, Survey on various gesture recognition technologies and techniques. Int. J. Comput. Appl. 50(7), 38–44 (2012)
C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu, Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)
M. Isard, A. Blake, CONDENSATION—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, C. Schmid, Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)
F. Jiang, S. Zhang, S. Wu, Y. Gao, D. Zhao, Multi-layered gesture recognition with Kinect. J. Mach. Learn. Res. 16, 227–254 (2015)
S. Johnson, M. Everingham, Clustered pose and nonlinear appearance models for human pose estimation, in BMVC, 2010. doi:10.5244/C.24.12
A. Joshi, S. Sclaroff, M. Betke, C. Monnier, A random forest approach to segmenting and classifying gestures, in Automatic Face and Gesture Recognition, 2015
T. Kadir, R. Bowden, E. Ong, A. Zisserman, Minimal training, large lexicon, unconstrained sign language recognition, in British Machine Vision Conference (BMVC), vol. 2, 2004, pp. 939–948
K. Kahol, P. Tripathi, S. Panchanathan, Automated gesture segmentation from dance sequences, in Automatic Face and Gesture Recognition, 2004, pp. 883–888
H. Kang, C.W. Lee, K. Jung, Recognition-based gesture spotting in video games. Pattern Recognit. Lett. 25(15), 1701–1704 (2004)
S. Kausar, M.Y. Javed, A survey on sign language recognition, Frontiers of Information Technology, 2011, pp. 95–98
Y. Ke, R. Sukthankar, M. Hebert, Efficient visual event detection using volumetric features, in IEEE International Conference on Computer Vision (ICCV), vol. 1, 2005, pp. 166–173
D. Kelly, J. McDonald, C. Markham, A person independent system for recognition of hand postures used in sign language. Pattern Recogn. Lett. 31(11), 1359–1368 (2010)
C. Keskin, F. Kıraç, Y.E. Kara, L. Akarun, Hand pose estimation and hand shape classification using multi-layered randomized decision forests, in European Conference on Computer Vision (ECCV), 2012, pp. 852–863
R.Z. Khan, N.A. Ibraheem, Survey on gesture recognition for hand image postures. Comput. Inf. Sci. 5(3), 110–121 (2012)
T.-K. Kim, S.-F. Wong, R. Cipolla, Tensor canonical correlation analysis for action classification, in IEEE Conference on Computer Vision and Pattern Recognition, 2007
D.K.H. Kohlsdorf, T.E. Starner, MAGIC summoning: towards automatic suggesting and testing of gestures with low probability of false positives during use. J. Mach. Learn. Res. 14(1), 209–242 (2013)
M. Kolsch, M. Turk, Fast 2D hand tracking with flocks of features and multi-cue integration, in IEEE Workshop on Real-Time Vision for Human-Computer Interaction, 2004, pp. 158–165
J. Konecny, M. Hagara, One-shot-learning gesture recognition using hog-hof features. J. Mach. Learn. Res. 15, 2513–2532 (2014), http://jmlr.org/papers/v15/konecny14a.html
Y. Kong, B. Satarboroujeni, Y. Fu, Hierarchical 3D kernel descriptors for action recognition using depth sequences, in Automatic Face and Gesture Recognition, 2015
J.B. Kruskal, M. Liberman, The symmetric time warping algorithm: from continuous to discrete, in Time Warps, Addison-Wesley, 1983
A. Kurakin, Z. Zhang, Z. Liu, A real time system for dynamic hand gesture recognition with a depth sensor, in European Signal Processing Conference, EUSIPCO, 2012, pp. 1975–1979
J.D. Lafferty, A. McCallum, F.C.N. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in International Conference on Machine Learning (ICML), 2001, pp. 282–289
H. Lane, R.J. Hoffmeister, B. Bahan, A Journey into the Deaf-World (DawnSign Press, San Diego, 1996)
I. Laptev, On space-time interest points, Int. J. Comput. Vis. 64(2–3), 107–123, (2005). ISSN 0920-5691. doi:10.1007/s11263-005-1838-7
I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human actions from movies, in CVPR, 2008, pp. 1–8
J.J. LaViola Jr., A survey of hand posture and gesture recognition techniques and technology, Technical Report, Providence, RI, USA, 1999
H.K. Lee, J.H. Kim, An HMM-based threshold model approach for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 961–973 (1999)
C. Li, K.M. Kitani, Pixel-level hand detection for ego-centric videos, in CVPR, 2013
W. Li, Z. Zhang, Z. Liu, Action recognition based on a bag of 3D points, in CVPR Workshops, 2010, pp. 9–14
H. Liang, J. Yuan, D. Thalmann, Z. Zhang, Model-based hand pose estimation via spatial-temporal hand parsing and 3D fingertip localization. Vis. Comput. 29(6–8), 837–848 (2013)
H. Liang, J. Yuan, D. Thalmann, Parsing the hand in depth images. IEEE Trans. Multimed. 16(5), 1241–1253 (2014)
Z. Lin, Z. Jiang, L.S. Davis, Recognizing actions by shape-motion prototype trees, in IEEE International Conference on Computer Vision, ICCV, 2009, pp. 444–451
K. Liu, C. Chen, R. Jafari, N. Kehtarnavaz, Fusion of inertial and depth sensor data for robust hand gesture recognition. IEEE Sens. J. 14(6), 1898–1903 (2014)
L. Liu, L. Shao, Learning discriminative representations from RGB-D video data, in International Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 1493–1500
O. Lopes, M. Reyes, S. Escalera, J. Gonzàlez, Spherical blurred shape model for 3-D object and pose recognition: quantitative analysis and HCI applications in smart environments. IEEE T. Cybern. 44(12), 2379–2390 (2014)
Y.M. Lui, Human gesture recognition on product manifolds. J. Mach. Learn. Res. 13(11), 3297–3321 (2012)
J. Luo, W. Wang, H. Qi, Spatio-temporal feature extraction and representation for RGB-D human action recognition, in PRL, 2014
S. Ma, J. Zhang, N. Ikizler-Cinbis, S. Sclaroff, Action recognition and localization by hierarchical space-time segments, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2013
M.R. Malgireddy, I. Nwogu, V. Govindaraju, Language-motivated approaches to action recognition. J. Mach. Learn. Res. 14, 2189–2212 (2013). http://jmlr.org/papers/v14/malgireddy13a.html
J. Martin, V. Devin, J.L. Crowley, Active hand tracking, in Automatic Face and Gesture Recognition, 1998, pp. 573–578
A. Martinez, S. Du, A model of the perception of facial expressions of emotion by humans: research overview and perspectives. J. Mach. Learn. Res. 13(5), 1589–1608 (2012)
D. McNeil, How language began, gesture and speech in human evolution, (Cambridge editorial, 2012)
S. Mitra, T. Acharya, Gesture recognition: a survey. Trans. Syst. Man Cybern. Part C 37(3), 311–324, 2007. ISSN 1094-6977
Z. Mo, U. Neumann, Real-time hand pose recognition using low-resolution depth images, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, pp. 1499–1505
B. Moghaddam, A. Pentland, Probabilistic visual learning for object detection, Technical Report 326, MIT, June 1995
P. Molchanov, S. Gupta, K. Kim, K. Pulli, Multi-sensor system for driverś hand-gesture recognition, in Automatic Face and Gesture Recognition, 2015
J. Nagi, F. Ducatelle, G.A. Di Caro, D.C. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L.M. Gambardella. Max-pooling convolutional neural networks for vision-based hand gesture recognition, in ICSIPA (IEEE, 2011), pp. 342–347. ISBN 978-1-4577-0243-3
S. Nayak, S. Sarkar, B. Loeding, Unsupervised modeling of signs embedded in continuous sentences, in IEEE Workshop on Vision for Human-Computer Interaction, 2005
S. Nayak, K. Duncan, S. Sarkar, B. Loeding, Finding recurrent patterns from continuous sign language sentences for automated extraction of signs. J. Mach. Learn. Res. 13(9), 2589–2615 (2012)
C. Neidle, A. Thangali, S. Sclaroff, Challenges in development of the American Sign Language lexicon video dataset (ASLLVD) corpus, in Workshop on the Representation and Processing of Sign Languages: Interactions Between Corpus and Lexicon, 2012
N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Hand segmentation with structured convolutional learning, in ACCV, 2014a
N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Multi-scale deep learning for gesture detection and localization, in ChaLearn Looking at People, European Conference on Computer Vision, 2014b
L. Nguyen-Dinh, A. Calatroni, G. Troster, Robust online gesture recognition with crowdsourced annotations. J. Mach. Learn. Res. 15, 3187–3220 (2014)
E. Ohn-Bar, M.M. Trivedi, Hand gesture recognition in real-time for automotive interfaces: a multimodal vision-based approach and evaluations, in IEEE Transactions on Intelligent Transportation Systems, 2014
I. Oikonomidis, N. Kyriazis, A.A. Argyros, Markerless and efficient 26-DOF hand pose recovery, in Asian Conference on Computer Vision (ACCV), 2010
I. Oikonomidis, N. Kyriazis, A.A. Argyros, Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints, in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2088–2095
K. Oka, Y. Sato, H. Koike, Real-time fingertip tracking and gesture recognition. IEEE Comput. Graphics Appl. 22(6), 64–71 (2002)
R. Oka, Spotting method for classification of real world data. Comput. J. 41(8), 559–565 (1998)
E.J. Ong, R. Bowden, A boosted classifier tree for hand shape detection, in Face and Gesture Recognition, 2004, pp. 889–894
O. Oreifej, Z. Liu, HON4D: histogram of oriented 4D normals for activity recognition from depth sequences, in CVPR, 2013, pp. 716–723
A. Pardo, A. Clapes, S. Escalera, O. Pujol, Actions in context: system for people with dementia, in 2nd International Workshop on Citizen Sensor Networks (Citisen2013) at the European Conference on Complex Systems (ECCS’13), 2013
X. Peng, L. Wang, Z. Cai, Y. Qiao, Action and gesture temporal spotting with super vector representation, in Computer Vision—ECCV 2014 Workshops, ed. by L. Agapito, M.M. Bronstein, C. Rother, Lecture Notes in Computer Science, vol. 8925 (Springer, Berlin, 2015), pp. 518–527. ISBN 978-3-319-16177-8. doi:10.1007/978-3-319-16178-5_36
A. Pieropan, G. Salvi, K.Pauwels, H. Kjellstrom, Audio-visual classification and detection of human manipulation actions, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014
V. Pitsikalis, A. Katsamanis, S. Theodorakis, P. Maragos, Multimodal gesture recognition via multiple hypotheses rescoring. J. Mach. Learn. Res. (2014)
N. Pugeault, R. Bowden, Spelling it out: real-time ASL fingerspelling recognition, in ICCV Workshops, 2011, pp. 1114–1119
A. Quattoni, S.B. Wang, L.-P. Morency, M. Collins, T. Darrell, Hidden conditional random fields. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1848–1852 (2007)
D. Ramanan, Learning to parse images of articulated bodies, in NIPS, 2006, pp. 1129–1136
J.M. Rehg, T. Kanade, Model-based tracking of self-occluding articulated objects, in IEEE International Conference on Computer Vision (ICCV), 1995, pp. 612–617
Z. Ren, J. Meng, J. Yuan, Z. Zhang, Robust hand gesture recognition with Kinect sensor, in ACM International Conference on Multimedia, 2011a, pp. 759–760
Z. Ren, J. Yuan, Z. Zhang, Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera, in ACM International Conference on Multimedia, 2011b, pp. 1093–1096
Z. Ren, J. Yuan, J. Meng, Z. Zhang, Robust part-based hand gesture recognition using Kinect sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013)
A. Roussos, S. Theodorakis, V. Pitsikalis, P. Maragos, Dynamic affine-invariant shape-appearance handshape features and classification in sign language videos. J. Mach. Learn. Res. 14(6), 1627–1663 (2013)
S. Ruffieux, D. Lalanne, E. Mugellini. ChAirGest: a challenge for multimodal mid-air gesture recognition for close HCI, in Proceedings of the 15th ACM on International Conference on Multimodal Interaction, 2013, pp. 483–488
A. Sadeghipour, L.-P. Morency, S. Kopp, Gesture-based object recognition using histograms of guiding strokes, in British Machine Vision Conference, 2012, pp. 44.1–44.11
D. Sánchez, M.A. Bautista, S. Escalera, HuPBA 8k+: dataset and ECOC-graphcut based segmentation of human limbs. Neurocomputing, 2014
B. Sapp, B. Taskar, Modec: multimodal decomposable models for human pose estimation, in CVPR, IEEE, 2013
Y. Sato, T. Kobayashi, Extension of Hidden Markov Models to deal with multiple candidates of observations and its application to mobile-robot-oriented gesture recognition, in International Conference on Pattern Recognition (ICPR), vol, II, 2002, pp. 515–519
J.D. Schein, At Home Among Strangers (Gallaudet U. Press, Washington, DC, 1989)
C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local SVM approach, in ICPR, vol. 3, 2004, pp. 32–36
N. Shapovalova, W. Gong., M. Pedersoli, F.X. Roca, J. Gonzalez, On importance of interactions and context in human action recognition, in Pattern Recognition and Image Analysis, 2011, pp. 58–66
J. Shotton, A.W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake, Real-time human pose recognition in parts from single depth images, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1297–1304
L. Sigal, A.O. Balan, M.J. Black, HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1–2), 4–27 (2010)
C. Sminchisescu, A. Kanaujia, D. Metaxas, Conditional models for contextual human motion recognition. Comput. Vis. Image Underst. 104, 210–220 (2006)
Y. Song, D. Demirdjian, R. Davis, Tracking body and hands for gesture recognition: NATOPS aircraft handling signals database, in Automatic Face and Gesture Recognition, 2011, pp. 500–506
T. Starner, A. Pentland, Real-time American Sign Language recognition using desk and wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1371–1375 (1998)
N. Stefanov, A. Galata, R. Hubbold, Real-time hand tracking with variable-length Markov Models of behaviour, in Real Time Vision for Human-Computer Interaction, 2005
B. Stenger, A. Thayananthan, P.H.S. Torr, R. Cipolla, Filtering using a tree-based estimator, in IEEE International Conference on Computer Vision (ICCV), 2003, pp. 1063–1070
E. Sudderth, M. Mandel, W. Freeman, A. Willsky, Distributed occlusion reasoning for tracking with nonparametric belief propagation, in Neural Information Processing Systems (NIPS), 2004
D. Tran, D. Forsyth, Improved human parsing with a full relational model, in ECCV (IEEE, 2010), pp. 227–240
J. Triesch, C. von der Malsburg, A system for person-independent hand posture recognition against complex backgrounds. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1449–1453 (2001)
J. Triesch, C. von der Malsburg, Classification of hand postures against complex backgrounds using elastic graph matching. Image Vis. Comput. 20(13–14), 937–943 (2002)
M. Van den Bergh, E. Koller-Meier, L. Van Gool, Real-time body pose recognition using 2D or 3D haarlets. Int. J. Comput. Vis. 83(1), 72–84 (2009)
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2001, pp. 511–518
C. Vogler, D Metaxas, Parallel Hidden Markov Models for American Sign Language recognition, In IEEE International Conference on Computer Vision (ICCV), 1999, pp. 116–122
J. Wan, Q. Ruan, W. Li, S. Deng, One-shot learning gesture recognition from RGB-D data using bag of features. J. Mach. Learn. Res. 14, 2549–2582 (2013). http://jmlr.org/papers/v14/wan13a.html
H. Wang, C. Schmid, Action recognition with improved trajectories, in IEEE International Conference on Computer Vision, 2013
H. Wang, A. Stefan, S. Moradi, V. Athitsos, C. Neidle, F. Kamangar, A system for large vocabulary sign search, in Workshop on Sign, Gesture and Activity (SGA), 2010
H. Wang, X. Chai, Y. Zhou, X. Chen, Fast sign language recognition benefited from low rank approximation, in Automatic Face and Gesture Recognition, 2015a
J. Wang, Z. Liu, Y. Wu, J. Yuan, Learning actionlet ensemble for 3D human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 914–927 (2014)
R.Y. Wang, J. Popović, Real-time hand-tracking with a color glove. ACM Trans. Graph. 28(3), 63:1–63:8 (2009)
Y. Wang, D. Tran, Z. Liao, D. Forsyth, Discriminative hierarchical part-based models for human parsing and action recognition. J. Mach. Learn. Res. 13(10), 3075–3102 (2012)
Z. Wang, L. Wang, W. Du, Q. Yu, Action spotting system using Fisher vector, in CVPR ChaLearn Looking at People Workshop 2015, 2015
M. Wilhelm, A generic context aware gesture recognition framework for smart environments, in PerCom Workshops, 2012, pp. 536–537
A.D. Wilson, A.F. Bobick, Parametric Hidden Markov Models for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 884–900 (1999)
J. Wu, J. Cheng, Bayesian co-boosting for multi-modal gesture recognition. J. Mach. Learn. Res. 15(1), 3013–3036 (2014)
Y. Wu, T.S. Huang, View-independent recognition of hand postures, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2000, pp. 88–94
Y. Xiao, Z. Zhang, A. Beck, J. Yuan, D. Thalmann, Human-robot interaction by understanding upper body gestures. Presence 23(2), 133–154 (2014)
H.D. Yang, S. Sclaroff, S.W. Lee, Sign language spotting with a threshold model based on conditional random fields. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1264–1277 (2009)
M.H. Yang, N. Ahuja, M. Tabb, Extraction of 2D motion trajectories and its application to hand gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1061–1074 (2002)
W. Yang, Y. Wang, G. Mori, Recognizing human actions from still images with latent poses, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 2030–2037
X. Yang, Y. Tian, Super normal vector for activity recognition using depth sequences, in CVPR, 2014a
X. Yang, Y. Tian, Action recognition using super sparse coding vector with spatio-temporal awareness, in ECCV, 2014b
G. Yao, H. Yao, X. Liu, F. Jiang, Real time large vocabulary continuous sign language recognition based on OP/Viterbi algorithm, International Conference on Pattern Recognition, vol. 3, 2006, pp. 312–315
G. Yu, Z. Liu, J. Yuan, Discriminative orderlet mining for real-time recognition of human-object interaction, in ACCV, 2014
J. Yuan, Z. Liu, Y. Wu, Discriminative video pattern search for efficient action detection. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1728–1743 (2011)
Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, P. Presti, American Sign Language recognition with the Kinect, in Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI ’11, ACM, New York, NY, USA, 2011, pp. 279–286. ISBN 978-1-4503-0641-6. 10.1145/2070481.2070532. doi:10.1145/2070481.2070532
M. Zanfir, M. Leordeanu, C. Sminchisescu, The moving pose: An efficient 3D kinematics descriptor for low-latency action recognition and detection, in ICCV, 2013
J. Zieren, K.-F. Kraiss, Robust person-independent visual sign language recognition. Iberian Conf. Pattern Recognit. Image Anal. 1, 520–528 (2005)
Acknowledgements
This work has been partially supported by ChaLearn Challenges in Machine Learning http://chalearn.org, the Human Pose Recovery and Behavior Analysis Group (HuPBA research group: http://www.maia.ub.es/~sergio/), the Pascal2 network of excellence, NSF grants 1128296, 1059235, 1055062, 1338118, 1035913, 0923494, and Spanish project TIN2013-43478-P. Our sponsors include Microsoft and Texas Instrument who donated prizes and provided technical support. The challenges were hosted by Kaggle.com and Coralab.org who are gratefully acknowledged. We thank our co-organizers of ChaLearn gesture and action recognition challenges: Miguel Reyes, Jordi Gonzalez, Xavier Baro, Jamie Shotton, Victor Ponce, Miguel Angel Bautista, and Hugo Jair Escalante.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Escalera, S., Athitsos, V., Guyon, I. (2017). Challenges in Multi-modal Gesture Recognition. In: Escalera, S., Guyon, I., Athitsos, V. (eds) Gesture Recognition. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-57021-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-57021-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57020-4
Online ISBN: 978-3-319-57021-1
eBook Packages: Computer ScienceComputer Science (R0)