Skip to main content

A Survey on Big Data and Collective Intelligence

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10230))

Included in the following conference series:

  • 1687 Accesses

Abstract

The creation and accumulation of Big Data is a fact for a plethora of scenarios nowadays. Sources such as the ever-increasing diversity sensors as well as the content created by humans have contributed to the Big Data’s enormous size and unique characteristics. Making sense of these data has primarily rested upon Big Data analysis algorithms. Still, in one too many cases the effectiveness of these algorithms is hampered by the very nature of Big Data: analogue, noisy, implicit, and ambiguous. Enter Collective Intelligence: the capability of interconnected intelligences achieving ameliorated results in activities than each of the single intelligences creating the collective solely would. Accordingly, this work presents existing research on Big Data and Collective Intelligence. The work is concluded with the presentation of the challenges and perspectives of the common ground between the directions of Big Data and Collective Intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Collective_intelligence.

  2. 2.

    http://www.linuxfoundation.org/.

  3. 3.

    Henceforth appearing with a capital first V in order to denote the specific meaning these have for Big Data.

  4. 4.

    An extensive presentation of the service and deployment models is outside the scope of this work. Interested readers are referred to [21].

  5. 5.

    http://hadoop.apache.org/.

  6. 6.

    Collective behaviour in animals displaying intelligence attributes is established but outside the scope of this work. Interested readers are referred to Chap. 4 of [18].

  7. 7.

    Interested readers are referred to Chap. 5 of [18] for an extensive set of Collective Intelligence forecasting examples.

References

  1. Collective intelligence (2016). https://en.wikipedia.org/wiki/Collective_intelligence. Accessed 2 July 2016

  2. Abadi, D., Babu, S., Özcan, F., Pandis, I.: SQL-on-hadoop systems: tutorial. Proc. VLDB Endowment 8(12), 2050–2051 (2015)

    Article  Google Scholar 

  3. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16(1), 3–9 (1989)

    Google Scholar 

  4. Aslett, M.: NoSQL, NewSQL and beyond (2011). https://451research.com/report-long?icid=1651

  5. Borne, K.: Top 10 big data challenges a serious look at 10 big data vs (2014). https://www.mapr.com/blog/top-10-big-data-challenges-%E2%80%93-serious-look-10-big-data-v%E2%80%99s. Accessed 2 July 2016

  6. Byrd, D.: Organization and searching of musical information (2008). http://homes.soic.indiana.edu/donbyrd/Teach/I545Site-Spring08/SyllabusI545.html

  7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  8. Domingue, J., Lasierra, N., Fensel, A., Kasteren, T., Strohbach, M., Thalhammer, A.: Big data analysis. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 63–86. Springer, Cham (2016). doi:10.1007/978-3-319-21569-3_5

    Chapter  Google Scholar 

  9. Estells-Arolas, E., Gonzlez-Ladrn-de Guevara, F.: Towards an integrated crowdsourcing definition. J. Inform. Sci. 38(2), 189–200 (2012)

    Article  Google Scholar 

  10. Fisher, D., DeLine, R., Czerwinski, M., Drucker, S.: Interactions with big data analytics. Interactions 19(3), 50–59 (2012)

    Article  Google Scholar 

  11. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS Operating Systems Review, vol. 37, pp. 29–43 (2003)

    Google Scholar 

  12. Glenn, J.C.: Collective intelligence: one of the next big things. Futura 4, 45–57 (2009)

    Google Scholar 

  13. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of big data on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  14. Hilbert, M., López, P.: The world’s technological capacity to store, communicate, and compute information. Science 332(6025), 60–65 (2011)

    Article  Google Scholar 

  15. Karydi, D., Karydis, I.: Legal issues of aggregating and curating information flows: the case of RSS protocol. In: International Conference on Information Law (2014)

    Google Scholar 

  16. Laney, D.: 3D data management: Controlling data volume, velocity, and variety. Technical report, META Group (2001)

    Google Scholar 

  17. Leavitt, N.: Will NoSQL databases live up to their promise? Computer 43(2), 12–14 (2010)

    Article  Google Scholar 

  18. Malone, T., Bernstein, M.: Handbook of Collective Intelligence. MIT Press, Cambridge (2015)

    Google Scholar 

  19. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., Greenwich (2015)

    Google Scholar 

  20. McCarthy, J., Minsky, M., Rochester, N., Shannon, C.: A proposal for the dartmouth summer research project on artificial intelligence (1955). http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html. Accessed 2 July 2016

  21. Mell, P.M., Grance, T.: SP 800–145. The NIST definition of cloud computing. Technical report, Gaithersburg, MD, United States (2011)

    Google Scholar 

  22. Provost, F., Kohavi, R.: Guest editors’ introduction: on applied research in machine learning. Mach. Learn. 30(2–3), 127–132 (1998)

    Article  Google Scholar 

  23. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2009)

    MATH  Google Scholar 

  24. Safire, W.: On language (2009). http://www.nytimes.com/2009/02/08/magazine/08wwln-safire-t.html. Accessed 2 July 2016

  25. Segaran, T.: Programming Collective Intelligence: Building Smart Web 2.0 Applications. O’Reilly Media, Sebastopol (2007)

    Google Scholar 

  26. Servan-Schreiber, E.: Why you need collective intelligence in the age of big data (2015). https://blog.hypermind.com/2015/01/28/the-role-of-collective-intelligence-in-the-age-of-big-data/. Accessed 2 July 2016

  27. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: IEEE Symposium on Mass Storage Systems and Technologies

    Google Scholar 

  28. Snijders, C., Matzat, U., Reips, U.D.: “Big Data”: Big gaps of knowledge in the field of internet science. Int. J. Internet Sci. 7(1), 1–5 (2012)

    Google Scholar 

  29. Strohbach, M., Daubert, J., Ravkin, H., Lischka, M.: Big data storage. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 119–141. Springer, Cham (2016). doi:10.1007/978-3-319-21569-3_7

    Chapter  Google Scholar 

  30. Tsai, C.W., Lai, C.F., Chao, H.C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 2(1), 1–32 (2015)

    Article  Google Scholar 

  31. Venkatesh, P.: NewSQL the new way to handle big data (2012). http://opensourceforu.com/2012/01/newsql-handle-big-data/. Accessed 2 July 2016

  32. Wu, J., Ping, L., Ge, X., Wang, Y., Fu, J.: Cloud storage as the infrastructure of cloud computing. In: Intelligent Computing and Cognitive Informatics

    Google Scholar 

  33. Yi, S.K.M., Steyvers, M., Lee, M.D., Dry, M.J.: The wisdom of the crowd in combinatorial problems. Cogn. Sci. 36(3), 452–470 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karydis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karydis, I., Sioutas, S., Avlonitis, M., Mylonas, P., Kanavos, A. (2017). A Survey on Big Data and Collective Intelligence. In: Sellis, T., Oikonomou, K. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2016. Lecture Notes in Computer Science(), vol 10230. Springer, Cham. https://doi.org/10.1007/978-3-319-57045-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57045-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57044-0

  • Online ISBN: 978-3-319-57045-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics