Skip to main content

Computation of Delta Greek for Non-linear Models in Mathematical Finance

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10187))

Included in the following conference series:

Abstract

We consider a class of non-linear models in mathematical finance. The focus is on numerical study of Delta equation, where the unknown solution is the first spatial derivative of the option value. We also discuss the convergence to the viscosity solution. Newton’s and Picard’s iteration methods for solving the non-linear system of algebraic equations are proposed. Illustrative numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankudinova, J., Ehrhardt, M.: On the numerical solution of nonlinear Black-Scholes equation. Comp. Math Appl. 56, 799–812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  3. Barles, G., Soner, M.-H.: Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stoch. 2, 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Company, R., Navarro, E., Pintos, J.R., Ponsoda, E.: Numerical solution of linear and nonlinear Black-Scholes option pricing equation. Comput. Math. Appl. 56, 813–821 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Forsyth, P., Vetzal, K.: Numerical methods for nonlinear PDEs in finance, handbook of computational finance. In: Duan, J.-C., Härdle, W.K., Gentle, J.E. (eds.) Part of the Series Springer Handbooks of Computational Statistics, pp. 503–528. Springer, Heidelberg (2011)

    Google Scholar 

  6. Haentjens, T., In’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation. J. Comp. Fin. 16(1), 83–110 (2012)

    Article  Google Scholar 

  7. Koleva, M.N.: Positivity preserving numerical method for non-linear Black-Scholes models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 363–370. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41515-9_40

    Chapter  Google Scholar 

  8. Koleva, M.N., Valkov, R.L.: Two-grid algorithms for pricing American options by a penalty method, In: ALGORITMY 2016, Slovakia, Publishing House of Slovak University of Technology in Bratislava, pp. 275–284 (2016)

    Google Scholar 

  9. Koleva, M.N., Vulkov, L.G.: On splitting-based numerical methods for nonlinear models of European options. Int. J. Comput. Math. 3(5), 781–796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leland, H.E.: Option pricing and replication with transaction costs. J. Fin. 40, 1283–1301 (1985)

    Article  Google Scholar 

  11. Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 16, 8811–8828 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Rigal, A.: High order difference schemes for unsteady one-dimensional diffusion-convection problems. J. Comput. Phys. 114(1), 59–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ševčovič, D., Stehlıková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers, New York (2011)

    Google Scholar 

  14. Ševčovič, D., Žitňanská, M.: Analysis of the nonlinear option pricing model under variable transaction costs. Asia-Pacific Finan. Markets. 23(2), 153–174 (2016)

    Article  Google Scholar 

  15. Valkov, R.: Fitted strong stability-preserving schemes for the Black-Scholes-Barenblatt equation. Int. J. Comput. Math. 92(12), 2475–2497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valkov, R.: Predictor-Corrector balance method for the worst-case 1D option pricing. Comput. Methods Appl. Math. 16(1), 175–186 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Wang, S.: Anovel fitted finite volume method for the Black-Scholes equation governing option pricing. IMA J. Numer. Anal. 24, 699–720 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union under Grant Agreement number 304617 (FP7 Marie Curie Action Project Multi-ITN STRIKE - Novel Methods in Computational Finance) and the Bulgarian National Fund of Science under Project I02/20-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miglena N. Koleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Koleva, M.N., Vulkov, L.G. (2017). Computation of Delta Greek for Non-linear Models in Mathematical Finance. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2016. Lecture Notes in Computer Science(), vol 10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57099-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57098-3

  • Online ISBN: 978-3-319-57099-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics