Skip to main content

An ECoG-Based BCI Based on Auditory Attention to Natural Speech

  • Chapter
  • First Online:
Brain-Computer Interface Research

Abstract

People affected by severe neuro-degenerative diseases (e.g., late-stage amyotrophic lateral sclerosis (ALS) or locked-in syndrome) eventually lose all muscular control and are no longer able to gesture or speak. For this population, an auditory BCI is one of only a few remaining means of communication. All currently used auditory BCIs require a relatively artificial mapping between a stimulus and a communication output. This mapping is cumbersome to learn and use. Recent studies suggest electrocorticographic (ECoG) signals in the gamma band (i.e., 70–170 Hz) can be used to infer the identity of auditory speech stimuli, effectively removing the need to learn such an artificial mapping. However, BCI systems that use this physiological mechanism for communication purposes have not yet been described. In this study, we explore this possibility by implementing a BCI2000-based real-time system that uses ECoG signals to identify the attended speaker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Clin. Neurophysiol. 113(6), 767 (2002). doi:10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  2. P. Brunner, S. Joshi, S. Briskin, J.R. Wolpaw, H. Bischof, G. Schalk, J. Neural Eng. 7(5), 056013 (2010). doi:10.1088/1741-2560/7/5/056013

    Article  Google Scholar 

  3. P. Brunner, G. Schalk, Clin. Neurophysiol. (2010). doi:10.1016/j.clinph.2010.11.014

  4. A. Belitski, J. Farquhar, P. Desain, J. Neural Eng. 8(2), 025022 (2011). doi:10.1088/1741-2560/8/2/025022

    Article  Google Scholar 

  5. A. Furdea, S. Halder, D.J. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, A. Kübler, Psychophysiology 46(3), 617 (2009). doi:10.1111/j.1469-8986.2008.00783.x

    Article  Google Scholar 

  6. D.S. Klobassa, T.M. Vaughan, P. Brunner, N.E. Schwartz, J.R. Wolpaw, C. Neuper, E.W. Sellers, Clin. Neurophysiol. 120(7), 1252 (2009)

    Article  Google Scholar 

  7. S. Halder, M. Rea, R. Andreoni, F. Nijboer, E.M. Hammer, S.C. Kleih, N. Birbaumer, A. Kübler, Clin. Neurophysiol. 121(4), 516 (2010). doi:10.1016/j.clinph.2009.11.087

    Article  Google Scholar 

  8. M. Schreuder, B. Blankertz, M. Tangermann, PLoS ONE 5(4) (2010). doi:10.1371/journal.pone.0009813

  9. A.M. Brouwer, J.B. van Erp, Front. Neurosci. 4, 19 (2010). doi:10.3389/fnins.2010.00019

    Google Scholar 

  10. M. van der Waal, M. Severens, J. Geuze, P. Desain, J. Neural Eng. 9(4), 045002 (2012). doi:10.1088/1741-2560/9/4/045002

    Article  Google Scholar 

  11. A. Riccio, D. Mattia, L. Simione, M. Olivetti, F. Cincotti, J. Neural Eng. 9(4), 045001 (2012). doi:10.1088/1741-2560/9/4/045001

    Article  Google Scholar 

  12. X. Pei, D.L. Barbour, E.C. Leuthardt, G. Schalk, J. Neural Eng. 8(4), 046028 (2011). doi:10.1088/1741-2560/8/4/046028

    Article  Google Scholar 

  13. E.C. Leuthardt, C. Gaona, M. Sharma, N. Szrama, J. Roland, Z. Freudenberg, J. Solis, J. Breshears, G. Schalk, J. Neural Eng. 8(3), 036004 (2011). doi:10.1088/1741-2560/8/3/036004

    Article  Google Scholar 

  14. X. Pei, J. Hill, G. Schalk, IEEE Pulse 3(1), 43 (2012). doi:10.1109/MPUL.2011.2175637

    Article  Google Scholar 

  15. S. Martin, P. Brunner, C. Holdgraf, H.J. Heinze, N.E. Crone, J. Rieger, G. Schalk, R.T. Knight, B. Pasley, Front. Neuroeng. 7(14) (2014). doi:10.3389/fneng.2014.00014

  16. F. Lotte, J.S. Brumberg, P. Brunner, A. Gunduz, A.L. Ritaccio, C. Guan, G. Schalk, Front. Hum. Neurosci. 9, 97 (2015). doi:10.3389/fnhum.2015.00097

    Article  Google Scholar 

  17. M.A. Lopez-Gordo, E. Fernandez, S. Romero, F. Pelayo, A. Prieto, J. Neural Eng. 9(3), 036013 (2012). doi:10.1088/1741-2560/9/3/036013

    Article  Google Scholar 

  18. C. Potes, A. Gunduz, P. Brunner, G. Schalk, NeuroImage 61(4), 841 (2012). doi:10.1016/j.neuroimage.2012.04.022

    Article  Google Scholar 

  19. C. Potes, P. Brunner, A. Gunduz, R.T. Knight, G. Schalk, NeuroImage 97, 188 (2014). doi:10.1016/j.neuroimage.2014.04.045

    Article  Google Scholar 

  20. B.N. Pasley, S.V. David, N. Mesgarani, A. Flinker, S.A. Shamma, N.E. Crone, R.T. Knight, E.F. Chang, PLoS Biol. 10(1), e1001251 (2012). doi:10.1371/journal.pbio.1001251

    Article  Google Scholar 

  21. J. Kubanek, P. Brunner, A. Gunduz, D. Poeppel, G. Schalk, PLoS ONE 8(1), e53398 (2013). doi:10.1371/journal.pone.0053398

    Article  Google Scholar 

  22. E.M. Zion Golumbic, N. Ding, S. Bickel, P. Lakatos, C.A. Schevon, G.M. McKhann, R.R. Goodman, R. Emerson, A.D. Mehta, J.Z. Simon, D. Poeppel, C.E. Schroeder, Neuron 77(5), 980 (2013). doi:10.1016/j.neuron.2012.12.037

  23. D. Wechsler, Weschsler Adult Intelligence Scale-III (The Psychological Corporation, San Antonio, TX, 1997)

    Google Scholar 

  24. J. Wada, T. Rasmussen, J. Neurosurg. 17, 266 (1960)

    Article  Google Scholar 

  25. J. Talairach, P. Tournoux, Co-Planar Sterotaxic Atlas of the Human Brain (Thieme Medical Publishers Inc., New York, 1988)

    Google Scholar 

  26. G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, J.R. Wolpaw, IEEE Trans. Biomed. Eng. 51(6), 1034 (2004)

    Article  Google Scholar 

  27. J. Mellinger, G. Schalk, in Toward Brain-Computer Interfacing, ed. by G. Dornhege, J. del R. Millan, T. Hinterberger, D. McFarland, K. Müller, (MIT Press, Cambridge, MA, USA, 2007), pp. 359–367

    Google Scholar 

  28. G. Schalk, J. Mellinger, A Practical Guide to Brain-Computer Interfacing with BCI2000, 1st edn. (Springer, London, UK, 2010)

    Book  Google Scholar 

  29. A. Kübler, B. Kotchoubey, J. Kaiser, J.R. Wolpaw, N. Birbaumer, Psychol. Bull. 127(3), 358 (2001)

    Article  Google Scholar 

  30. E.C. Leuthardt, Z. Freudenberg, D. Bundy, J. Roland, Neurosurg. Focus 27(1), E10 (2009). doi:10.3171/2009.4.FOCUS0980

    Article  Google Scholar 

  31. H. Davson, J. Physiol. 255(1), 1 (1976)

    Article  Google Scholar 

  32. H.M. Hamer, H.H. Morris, E.J. Mascha, M.T. Karafa, W.E. Bingaman, M.D. Bej, R.C. Burgess, D.S. Dinner, N.R. Foldvary, J.F. Hahn, P. Kotagal, I. Najm, E. Wyllie, H.O. Lüders, Neurology 58(1), 97 (2002)

    Article  Google Scholar 

  33. K.N. Fountas, J.R. Smith, Stereotact. Funct. Neurosurg. 85(6), 264 (2007). doi:10.1159/000107358

    Article  Google Scholar 

  34. J.J. Van Gompel, G.A. Worrell, M.L. Bell, T.A. Patrick, G.D. Cascino, C. Raffel, W.R. Marsh, F.B. Meyer, Neurosurgery 63(3), 498 (2008). doi:10.1227/01.NEU.0000324996.37228.F8

    Article  Google Scholar 

  35. C.H. Wong, J. Birkett, K. Byth, M. Dexter, E. Somerville, D. Gill, R. Chaseling, M. Fearnside, A. Bleasel, Acta Neurochir. (Wien) 151(1), 37 (2009). doi:10.1007/s00701-008-0171-7

    Article  Google Scholar 

  36. A. Torres Valderrama, R. Oostenveld, M.J. Vansteensel, G.M. Huiskamp, N.F. Ramsey, J. Neurosci. Methods 187(2). doi:10.1016/j.jneumeth.2010.01.019

  37. D.T. Bundy, E. Zellmer, C.M. Gaona, M. Sharma, N. Szrama, C. Hacker, Z.V. Freudenburg, A. Daitch, D.W. Moran, E.C. Leuthardt, J. Neural Eng. 11(1), 016006 (2014). doi:10.1088/1741-2560/11/1/016006

    Article  Google Scholar 

  38. K.A. Sillay, P. Rutecki, K. Cicora, G. Worrell, J. Drazkowski, J.J. Shih, A.D. Sharan, M.J. Morrell, J. Williams, B. Wingeier, Brain Stimul. 6(5), 718 (2013)

    Article  Google Scholar 

  39. T. Stieglitz, Miniaturized Neural Interfaces and Implants in Neurological Rehabilitation. In: W. Jensen, O. Andersen, M. Akay (eds.) Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems and Biorobotics, vol. 7 Springer, Cham (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (EB006356 (GS), EB00856 (GS) and EB018783 (GS)), the US Army Research Office (W911NF-07-1-0415 (GS), W911NF-08-1-0216 (GS) and W911NF-14-1-0440 (GS)) and Fondazione Neurone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerwin Schalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Brunner, P., Dijkstra, K., Coon, W.G., Mellinger, J., Ritaccio, A.L., Schalk, G. (2017). An ECoG-Based BCI Based on Auditory Attention to Natural Speech. In: Guger, C., Allison, B., Ushiba, J. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57132-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57132-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57131-7

  • Online ISBN: 978-3-319-57132-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics