Abstract
With the prevalence of cloud computing, the resource constrained clients are trended to outsource their computation-intensive tasks to the cloud server. Although outsourcing computation paradigm brings many benefits for both clients and cloud server, it causes some security challenges. In this paper, we focus on the outsourcing computation of matrix multiplication, and propose a new publicly verifiable computation scheme for batch matrix multiplication. Different from traditional matrix computation outsourcing model, the outsourcing task of our scheme is to compute \(MX_{i}\) for group of clients, where \(X_{i}\) is a private matrix chosen by different clients and M is a public matrix given by a data center beforehand. Based on the two techniques of privacy-preserving matrix transformation and matrix digest, our scheme can protect the secrecy of the client’s private matrix \(X_{i}\) and dramatically reduce the computation cost in both the key generation and the compute phases. The security analysis shows that the proposed scheme can also achieve the desired security properties under the co-CDH assumption.
Similar content being viewed by others
References
Chen, X.: Introduction to secure outsourcing computation. Synth. Lect. Inf. Secur. Priv. Trust 8, 1–93 (2016)
Joshi, K.P., Yesha, Y., Finin, T.: Automating cloud services life cycle through semantic technologies. IEEE Trans. Serv. Comput. 7, 109–122 (2012)
Paik, I., Chen, W., Huhns, M.N.: A scalable architecture for automatic service composition. IEEE Trans. Serv. Comput. 7, 82–95 (2014)
Park, K.W., Han, J., Chung, J.W., Park, K.H.: Themis: a mutually verifiable billing system for the cloud computing environment. IEEE Trans. Serv. Comput. 6, 300–313 (2013)
Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Toward secure and dependable storage services in cloud computing. IEEE Trans. Serv. Comput. 5, 220–232 (2012)
Wang, C., Zhang, B., Ren, K., Roveda, J.M.: Privacy-assured outsourcing of image reconstruction service in cloud. IEEE Trans. Emerg. Top. Comput. 1, 166–177 (2013)
Chen, X., Huang, X., Li, J., Ma, J.: New algorithms for secure outsourcing of large-scale systems of linear equations. IEEE Trans. Inf. Forensics Secur. 10, 69–78 (2015)
Lei, X., Liao, X., Huang, T., Heriniaina, F.: Achieving security, robust cheating resistance, and high-efficiency for outsourcing large matrix multiplication computation to a malicious cloud. Inf. Sci. 280, 205–217 (2014)
Lei, X., Liao, X., Huang, T., Li, H.: Outsourcing large matrix inversion computation to a public cloud. IEEE Trans. Cloud Comput. 1, 1 (2013)
Lei, X., Liao, X., Huang, T., Li, H.: Cloud computing service: the case of large matrix determinant computation. IEEE Trans. Serv. Comput. 8, 688–700 (2015)
Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: ACM Conference on Computer and Communications Security, pp. 501–512(2012)
Zhang, L.F., Safavi-Naini, R.: Verifiable delegation of computations with storage-verification trade-off. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 112–129. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9_7
Zhang, Y., Blanton, M.: Efficient secure and verifiable outsourcing of matrix multiplications. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 158–178. Springer, Cham (2014). doi:10.1007/978-3-319-13257-0_10
Elkhiyaoui, K., Önen, M., Azraoui, M., Molva, R.: Efficient techniques for publicly verifiable delegation of computation. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2016, Xi’an, China, 30 May–3 June 2016, pp. 119–128 (2016)
Sheng, G., Tang, C., Gao, W., Yin, Y.: MD-\(\cal{VC}_{Matrix}\): an efficient scheme for publicly verifiable computation of outsourced matrix multiplication. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 349–362. Springer, Cham (2016). doi:10.1007/978-3-319-46298-1_23
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_25
Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_24
Salinas, S.: Efficient secure outsourcing of large-scale linear systems of equations, pp. 1035–1043 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhang, X., Jiang, T., Li, KC., Chen, X. (2017). New Publicly Verifiable Computation for Batch Matrix Multiplication. In: Au, M., Castiglione, A., Choo, KK., Palmieri, F., Li, KC. (eds) Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer Science(), vol 10232. Springer, Cham. https://doi.org/10.1007/978-3-319-57186-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-57186-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57185-0
Online ISBN: 978-3-319-57186-7
eBook Packages: Computer ScienceComputer Science (R0)