Skip to main content

A Supervoxel-Based Solution to Resume Segmentation for Interactive Correction by Differential Image-Foresting Transforms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10225))

Abstract

The foolproof segmentation of 3D anatomical structures in medical images is usually a challenging task, which makes automatic results often far from desirable and interactive repairs necessary. In the past, we introduced a first solution to resume segmentation from third-party software into an initial optimum-path forest for interactive correction by differential image foresting transforms (DIFTs). Here, we present a new method that estimates the initial forest (input segmentation) rooted at more regularly separated seed voxels to facilitate interactive editing. The forest is a supervoxel segmentation from seeds that result from a sequence of image foresting transforms to conform as much as possible the supervoxel boundaries to the boundaries of the object in the input segmentation. We demonstrate the advantages of the new method over the previous one by using a robot user, as an impartial way to correct brain segmentation in MR-T1 images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    URL: http://www.bic.mni.mcgill.ca/.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Alexandre, E.B., Chowdhury, A.S., Falcão, A.X., Miranda, P.A.V.: IFT-SLIC: A general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In: SIBGRAPI, Salvador, Brazil (2015)

    Google Scholar 

  3. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  4. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface- based analysis: I. segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)

    Article  Google Scholar 

  5. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  6. Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Model. Image Process. 60(4), 233–260 (1998)

    Article  Google Scholar 

  7. Falcão, A., Bergo, F.F., Falcão, A., Bergo, F.F.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)

    Article  Google Scholar 

  8. Frackowiak, R.S.J., Friston, K.J., Frith, C., Dolan, R., Price, C.J., Zeki, S., Ashburner, J., Penny, W.D.: Human Brain Function, 2nd edn. Academic Press, Cambridge (2003)

    Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Grady, L., Funka-Lea, G.: An energy minimization approach to the data driven editing of presegmented images/volumes. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 888–895. Springer, Heidelberg (2006). doi:10.1007/11866763_109

    Chapter  Google Scholar 

  11. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR, pp. 3129–3136 (2010)

    Google Scholar 

  12. Harrison, A.P., Birkbeck, N., Sofka, M.: IntellEditS: intelligent learning-based editor of segmentations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 235–242. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_30

    Chapter  Google Scholar 

  13. Heckel, F., Moltz, J.H., Tietjen, C., Hahn, H.K.: Sketch-based editing tools for tumour segmentation in 3D medical images. Comput. Graph. Forum 32(8), 144–157 (2013)

    Article  Google Scholar 

  14. Jackowski, M., Satter, M., Goshtasby, A.: Approximating digital 3D shapes by rational Gaussian surfaces. IEEE Trans. Vis. Comput. Graphics 9(1), 56–69 (2003)

    Article  Google Scholar 

  15. Kang, H.W.: G-wire: a livewire segmentation algorithm based on a generalized graph formulation. Pattern Recogn. Lett. 26(13), 2042–2051 (2005)

    Article  Google Scholar 

  16. Karimov, A., Mistelbauer, G., Auzinger, T., Bruckner, S.: Guided volume editing based on histogram dissimilarity. Comput. Graph. Forum 34(3), 91–100 (2015)

    Article  Google Scholar 

  17. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)

    Article  Google Scholar 

  18. Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)

    Article  MathSciNet  Google Scholar 

  19. Madabhushi, A., Udupa, J.: Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans. Med. Imag. 24(5), 561–576 (2005)

    Article  Google Scholar 

  20. Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.: Image segmentation by image foresting transform with non-smooth connectivity functions. In: SIBGRAPI, pp. 147–154, August 2013

    Google Scholar 

  21. Miranda, P.A.V., Falcão, A.X., Ruppert, G. C., Cappabianco, F.A.: How to fix any 3D segmentation interactively via image foresting transform and its use in MRI brain segmentation. In: Biomedical Imaging, pp. 2031–2035. IEEE, Chicago, USA, March 2011

    Google Scholar 

  22. Miranda, P.A.V., Falcão, A.X., Ruppert, G.C.S.: How to complete any segmentation process interactively via image foresting transform. In: SIBGRAPI, pp. 309–316. IEEE, Gramado, Brazil, August 2010

    Google Scholar 

  23. Miranda, P.A.V., Falcão, A.X., Spina, T.V.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)

    Article  MathSciNet  Google Scholar 

  24. Miranda, P.A.V., Falcao, A.X., Udupa, J.K.: Cloud bank: A multiple clouds model and its use in MR brain image segmentation. In: ISBI, pp. 506–509, June 2009

    Google Scholar 

  25. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graph. Model. Im. Proc. 60(5), 349–384 (1998)

    Article  MATH  Google Scholar 

  26. Neubert, P., Protzel, P.: Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms. In: ICPR, pp. 996–1001, Stockholm, Sweden, August 2014

    Google Scholar 

  27. Spina, T.V., Martins, S.B., Falcão, A.X.: Interactive medical image segmentation by statistical seed models. In: SIBGRAPI, São José dos Campos, Brazil (2016)

    Google Scholar 

  28. Spina, T.V., Miranda, P.A.V., Falcão, A.X.: Hybrid approaches for interactive image segmentation using the live markers paradigm. IEEE Trans. Image Process. 23(12), 5756–5769 (2014)

    Article  MathSciNet  Google Scholar 

  29. Valenzuela, W., Ferguson, S.J., Ignasiak, D., Diserens, G., Vermathen, P., Boesch, C., Reyes, M.: Correction tool for active shape model based lumbar muscle segmentation. In: EMBC, pp. 3033–3036. IEEE, August 2015

    Google Scholar 

  30. Yang, H.-F., Choe, Y.: An interactive editing framework for electron microscopy image segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 400–409. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24028-7_37

    Chapter  Google Scholar 

Download references

Acknowledgements

Thanks to CNPq (308985/2015-0, 486083/2013-6, FINEP 1266/13), FAPESP (2011/50761-2, 2014/12236-1, 2015/09446-7, 2016/11853-2), CAPES, and NAP eScience - PRP - USP for funding, and Dr. J. K. Udupa (MIPG-UPENN) for the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Carlos Moreira Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tavares, A.C.M., Miranda, P.A.V., Spina, T.V., Falcão, A.X. (2017). A Supervoxel-Based Solution to Resume Segmentation for Interactive Correction by Differential Image-Foresting Transforms. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics