Abstract
The foolproof segmentation of 3D anatomical structures in medical images is usually a challenging task, which makes automatic results often far from desirable and interactive repairs necessary. In the past, we introduced a first solution to resume segmentation from third-party software into an initial optimum-path forest for interactive correction by differential image foresting transforms (DIFTs). Here, we present a new method that estimates the initial forest (input segmentation) rooted at more regularly separated seed voxels to facilitate interactive editing. The forest is a supervoxel segmentation from seeds that result from a sequence of image foresting transforms to conform as much as possible the supervoxel boundaries to the boundaries of the object in the input segmentation. We demonstrate the advantages of the new method over the previous one by using a robot user, as an impartial way to correct brain segmentation in MR-T1 images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Alexandre, E.B., Chowdhury, A.S., Falcão, A.X., Miranda, P.A.V.: IFT-SLIC: A general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In: SIBGRAPI, Salvador, Brazil (2015)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)
Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface- based analysis: I. segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)
Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)
Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Model. Image Process. 60(4), 233–260 (1998)
Falcão, A., Bergo, F.F., Falcão, A., Bergo, F.F.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)
Frackowiak, R.S.J., Friston, K.J., Frith, C., Dolan, R., Price, C.J., Zeki, S., Ashburner, J., Penny, W.D.: Human Brain Function, 2nd edn. Academic Press, Cambridge (2003)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)
Grady, L., Funka-Lea, G.: An energy minimization approach to the data driven editing of presegmented images/volumes. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 888–895. Springer, Heidelberg (2006). doi:10.1007/11866763_109
Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR, pp. 3129–3136 (2010)
Harrison, A.P., Birkbeck, N., Sofka, M.: IntellEditS: intelligent learning-based editor of segmentations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 235–242. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_30
Heckel, F., Moltz, J.H., Tietjen, C., Hahn, H.K.: Sketch-based editing tools for tumour segmentation in 3D medical images. Comput. Graph. Forum 32(8), 144–157 (2013)
Jackowski, M., Satter, M., Goshtasby, A.: Approximating digital 3D shapes by rational Gaussian surfaces. IEEE Trans. Vis. Comput. Graphics 9(1), 56–69 (2003)
Kang, H.W.: G-wire: a livewire segmentation algorithm based on a generalized graph formulation. Pattern Recogn. Lett. 26(13), 2042–2051 (2005)
Karimov, A., Mistelbauer, G., Auzinger, T., Bruckner, S.: Guided volume editing based on histogram dissimilarity. Comput. Graph. Forum 34(3), 91–100 (2015)
Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)
Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)
Madabhushi, A., Udupa, J.: Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans. Med. Imag. 24(5), 561–576 (2005)
Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.: Image segmentation by image foresting transform with non-smooth connectivity functions. In: SIBGRAPI, pp. 147–154, August 2013
Miranda, P.A.V., Falcão, A.X., Ruppert, G. C., Cappabianco, F.A.: How to fix any 3D segmentation interactively via image foresting transform and its use in MRI brain segmentation. In: Biomedical Imaging, pp. 2031–2035. IEEE, Chicago, USA, March 2011
Miranda, P.A.V., Falcão, A.X., Ruppert, G.C.S.: How to complete any segmentation process interactively via image foresting transform. In: SIBGRAPI, pp. 309–316. IEEE, Gramado, Brazil, August 2010
Miranda, P.A.V., Falcão, A.X., Spina, T.V.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)
Miranda, P.A.V., Falcao, A.X., Udupa, J.K.: Cloud bank: A multiple clouds model and its use in MR brain image segmentation. In: ISBI, pp. 506–509, June 2009
Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graph. Model. Im. Proc. 60(5), 349–384 (1998)
Neubert, P., Protzel, P.: Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms. In: ICPR, pp. 996–1001, Stockholm, Sweden, August 2014
Spina, T.V., Martins, S.B., Falcão, A.X.: Interactive medical image segmentation by statistical seed models. In: SIBGRAPI, São José dos Campos, Brazil (2016)
Spina, T.V., Miranda, P.A.V., Falcão, A.X.: Hybrid approaches for interactive image segmentation using the live markers paradigm. IEEE Trans. Image Process. 23(12), 5756–5769 (2014)
Valenzuela, W., Ferguson, S.J., Ignasiak, D., Diserens, G., Vermathen, P., Boesch, C., Reyes, M.: Correction tool for active shape model based lumbar muscle segmentation. In: EMBC, pp. 3033–3036. IEEE, August 2015
Yang, H.-F., Choe, Y.: An interactive editing framework for electron microscopy image segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011. LNCS, vol. 6938, pp. 400–409. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24028-7_37
Acknowledgements
Thanks to CNPq (308985/2015-0, 486083/2013-6, FINEP 1266/13), FAPESP (2011/50761-2, 2014/12236-1, 2015/09446-7, 2016/11853-2), CAPES, and NAP eScience - PRP - USP for funding, and Dr. J. K. Udupa (MIPG-UPENN) for the images.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Tavares, A.C.M., Miranda, P.A.V., Spina, T.V., Falcão, A.X. (2017). A Supervoxel-Based Solution to Resume Segmentation for Interactive Correction by Differential Image-Foresting Transforms. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-57240-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57239-0
Online ISBN: 978-3-319-57240-6
eBook Packages: Computer ScienceComputer Science (R0)