Skip to main content

Parametric Optimization Based on Bacterial Foraging Optimization

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 573))

Included in the following conference series:

  • 1182 Accesses

Abstract

Today parametric optimization problems are widely used in different science and technology domains. These problems are weather forecasting, calculation of electromotor parameters as well as VLSI design problems which belong to NP-problems and do not have deterministic algorithms to solve it. So, it is necessary to develop up-and-coming heuristic methods to obtain quazi-optimal solutions during polynomial time. The paper deals with parametric optimization of technical objects. From the mathematical point of view the parametric optimization problem reduces to the global constrained continuous optimization. The formulation of parametric optimization problem is made. To solve this problem it is developed a stochastic algorithm based on foraging behavior of E.coli bacteria. A bacterial colony is considered as multiagent system in which each agent operates in autonomy according with quite elementary rules. Colony behavior is based on self-organization to reach common goals by low-level interconnection. The colony does not have centralized control. Conjunction of simple agents creates a behavioral strategy without any global control. To analyze the developed algorithm there were carried out a set of experiments, which confirm theoretical estimations and calculate optimal values of algorithm parameters. Experimental results show perspective of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kureichik, V.V., Kureichik, V.M., Malioukov, S.P., Malioukov, A.S.: Algorithms for Applied CAD Problems. Springer, Berlin (2009). 487 p.

    Book  Google Scholar 

  2. Alpert, C.J., Dinesh, P.M., Sachin, S.S.: Handbook of Algorithms for Physical design Automation. Auerbach Publications Taylor & Francis Group, Boca Raton (2009)

    MATH  Google Scholar 

  3. Zaruba, D., Zaporozhets, D., Kureichik, V.: Artificial bee colony algorithm—a novel tool for VLSI placement. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference Intelligent Information Technologies for Industry (IITI 2016). AISC, vol. 450, pp. 433–442. Springer, Cham (2016). doi:10.1007/978-3-319-33609-1_39

    Google Scholar 

  4. Zaruba, D., Zaporozhets, D., Kureichik, V.: VLSI placement problem based on ant colony optimization algorithm. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 127–133. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_12

    Chapter  Google Scholar 

  5. Kureichik, V., Kureichik, V., Zaruba, D.: Hybrid bioinspired search for schematic design. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference Intelligent Information Technologies for Industry (IITI 2016). AISC, vol. 451, pp. 249–255. Springer, Cham (2016)

    Google Scholar 

  6. Kureichik, V., Kureichik, V., Bova, V.: Placement of VLSI fragments based on a multilayered approach. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 181–190. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_17

    Chapter  Google Scholar 

  7. Kureichik, V.V., Kravchenko, Y.A.: Bioinspired algorithm applied to solve the travelling salesman problem. World Appl. Sci. J. 22(12), 1789–1797 (2013)

    Google Scholar 

  8. Kar, A.K.: Bio inspired computing - a review of algorithms and scope of applications. Expert Syst. Appl. 59, 20–32 (2016)

    Article  Google Scholar 

  9. Lim, S.K.: Practical Problems in VLSI Physical Design Automation. Springer Science+Business Media B.V, Heidelberg (2008)

    Book  Google Scholar 

  10. Yang, C., Ji, J., Liu, J., Yin, B.: Bacterial foraging optimization using novel chemotaxis and conjugation strategies. Inf. Sci. 363, 72–95 (2016)

    Article  Google Scholar 

  11. Zhao, W., Wang, L.: An effective bacterial foraging optimizer for global optimization. Inf. Sci. 329, 719–735 (2016)

    Article  Google Scholar 

  12. Kureichik, V.V., Zaruba, D.V.: The bioinspired algorithm of electronic computing equipment schemes elements placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 347, pp. 51–58. Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_6

    Google Scholar 

  13. Zaporozhets, D., Zaruba, D.V., Kureichik, V.V.: Hierarchical approach for VLSI components placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 347, pp. 79–87. Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_9

    Google Scholar 

  14. Hernández-Ocaña, B., Mezura-Montes, E., Pozos-Parra, Ma.D.P. Evolutionary bacterial foraging algorithm to solve constraint numerical optimization problems. In: CEUR Workshop Proceedings, vol. 1659, pp. 58–65 (2016)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Council for Grants (under RF President), the project #MК-92.2017.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Zaruba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zaruba, D., Zaporozhets, D., Kuliev, E. (2017). Parametric Optimization Based on Bacterial Foraging Optimization. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57261-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57260-4

  • Online ISBN: 978-3-319-57261-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics