Abstract
Today parametric optimization problems are widely used in different science and technology domains. These problems are weather forecasting, calculation of electromotor parameters as well as VLSI design problems which belong to NP-problems and do not have deterministic algorithms to solve it. So, it is necessary to develop up-and-coming heuristic methods to obtain quazi-optimal solutions during polynomial time. The paper deals with parametric optimization of technical objects. From the mathematical point of view the parametric optimization problem reduces to the global constrained continuous optimization. The formulation of parametric optimization problem is made. To solve this problem it is developed a stochastic algorithm based on foraging behavior of E.coli bacteria. A bacterial colony is considered as multiagent system in which each agent operates in autonomy according with quite elementary rules. Colony behavior is based on self-organization to reach common goals by low-level interconnection. The colony does not have centralized control. Conjunction of simple agents creates a behavioral strategy without any global control. To analyze the developed algorithm there were carried out a set of experiments, which confirm theoretical estimations and calculate optimal values of algorithm parameters. Experimental results show perspective of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kureichik, V.V., Kureichik, V.M., Malioukov, S.P., Malioukov, A.S.: Algorithms for Applied CAD Problems. Springer, Berlin (2009). 487 p.
Alpert, C.J., Dinesh, P.M., Sachin, S.S.: Handbook of Algorithms for Physical design Automation. Auerbach Publications Taylor & Francis Group, Boca Raton (2009)
Zaruba, D., Zaporozhets, D., Kureichik, V.: Artificial bee colony algorithm—a novel tool for VLSI placement. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference Intelligent Information Technologies for Industry (IITI 2016). AISC, vol. 450, pp. 433–442. Springer, Cham (2016). doi:10.1007/978-3-319-33609-1_39
Zaruba, D., Zaporozhets, D., Kureichik, V.: VLSI placement problem based on ant colony optimization algorithm. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 127–133. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_12
Kureichik, V., Kureichik, V., Zaruba, D.: Hybrid bioinspired search for schematic design. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference Intelligent Information Technologies for Industry (IITI 2016). AISC, vol. 451, pp. 249–255. Springer, Cham (2016)
Kureichik, V., Kureichik, V., Bova, V.: Placement of VLSI fragments based on a multilayered approach. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 464, pp. 181–190. Springer, Cham (2016). doi:10.1007/978-3-319-33625-1_17
Kureichik, V.V., Kravchenko, Y.A.: Bioinspired algorithm applied to solve the travelling salesman problem. World Appl. Sci. J. 22(12), 1789–1797 (2013)
Kar, A.K.: Bio inspired computing - a review of algorithms and scope of applications. Expert Syst. Appl. 59, 20–32 (2016)
Lim, S.K.: Practical Problems in VLSI Physical Design Automation. Springer Science+Business Media B.V, Heidelberg (2008)
Yang, C., Ji, J., Liu, J., Yin, B.: Bacterial foraging optimization using novel chemotaxis and conjugation strategies. Inf. Sci. 363, 72–95 (2016)
Zhao, W., Wang, L.: An effective bacterial foraging optimizer for global optimization. Inf. Sci. 329, 719–735 (2016)
Kureichik, V.V., Zaruba, D.V.: The bioinspired algorithm of electronic computing equipment schemes elements placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 347, pp. 51–58. Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_6
Zaporozhets, D., Zaruba, D.V., Kureichik, V.V.: Hierarchical approach for VLSI components placement. In: Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z. (eds.) Artificial Intelligence Perspectives in Intelligent Systems. AISC, vol. 347, pp. 79–87. Springer, Cham (2015). doi:10.1007/978-3-319-18476-0_9
Hernández-Ocaña, B., Mezura-Montes, E., Pozos-Parra, Ma.D.P. Evolutionary bacterial foraging algorithm to solve constraint numerical optimization problems. In: CEUR Workshop Proceedings, vol. 1659, pp. 58–65 (2016)
Acknowledgements
This research is supported by the Council for Grants (under RF President), the project #MК-92.2017.8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zaruba, D., Zaporozhets, D., Kuliev, E. (2017). Parametric Optimization Based on Bacterial Foraging Optimization. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-57261-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57260-4
Online ISBN: 978-3-319-57261-1
eBook Packages: EngineeringEngineering (R0)