Skip to main content

Assessing Death Risk of Patients with Cardiovascular Disease from Long-Term Electrocardiogram Streams Summarization

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10234))

Included in the following conference series:

Abstract

Cardiovascular disease (CVD) is the leading cause of death around the world. Researches on assessing patients death risk from Electrocardiographic (ECG) data has attracted increasing attention recently. In this paper, we summarize long-term overwhelming ECG data using morphological concern of overall evolution. And then assessing patients death risk from high value density ECG summarization instead of raw data. Our method is totally unsupervised without the help of expert knowledge. Moreover, it can assist in clinical practice without any additional burden like buy new devices or add more caregivers. Comprehensive results show effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., de Ferranti, S., Despres, J.P., Fullerton, H.J., Howard, V.J., et al.: Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation 131(4), e29 (2015)

    Article  Google Scholar 

  2. Nichols, M., Townsend, N., Scarborough, P., Rayner, M.: Cardiovascular disease in Europe 2014: epidemiological update. Eur. Heart J. 35(42), 2950–2959 (2014)

    Article  Google Scholar 

  3. Ballantyne, C.M., Hoogeveen, R.C., Bang, H., Coresh, J., Folsom, A.R., Heiss, G., Sharrett, A.R.: Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (aric) study. Circulation 109(7), 837–842 (2004)

    Article  Google Scholar 

  4. Vasan, R.S., Larson, M.G., Benjamin, E.J., Evans, J.C., Reiss, C.K., Levy, D.: Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J. Am. Coll. Cardiol. 33(7), 1948–1955 (1999)

    Article  Google Scholar 

  5. Chia, C.C., Blum, J., Karam, Z., Singh, S., Syed, Z.: Predicting postoperative atrial fibrillation from independent ECG components. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  6. Bender, J., Russell, K., Rosenfeld, L., Chaudry, S.: Oxford American Handbook of Cardiology. Oxford University Press, New York (2010)

    Google Scholar 

  7. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  8. Zong, W., Moody, G., Jiang, D.: A robust open-source algorithm to detect onset and duration of QRS complexes. In: Computers in Cardiology, pp. 737–740. IEEE (2003)

    Google Scholar 

  9. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: VLDB (2000)

    Google Scholar 

  10. Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Fifth IEEE International Conference on Data Mining, 8 p. IEEE (2005)

    Google Scholar 

  11. Wu, H., Salzberg, B., Zhang, D.: Online event-driven subsequence matching over financial data streams. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 23–34. ACM (2004)

    Google Scholar 

  12. Tang, L.a., Cui, B., Li, H., Miao, G., Yang, D., Zhou, X.: Effective variation management for pseudo periodical streams. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 257–268. ACM (2007)

    Google Scholar 

  13. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings IEEE International Conference on Data Mining, ICDM 2001, pp. 289–296. IEEE (2001)

    Google Scholar 

  14. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., et al.: PhysioBank, PhysioToolkit, and PhysioNet – components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  15. Chiang, H.S., Shih, D.H., Lin, B., Shih, M.H.: An APN model for arrhythmic beat classification. Bioinformatics 30(12), 1739–1746 (2014)

    Article  Google Scholar 

  16. Tafreshi, R., Jaleel, A., Lim, J., Tafreshi, L.: Automated analysis of ECG waveforms with atypical QRS complex morphologies. Biomed. Sig. Process. Control 10, 41–49 (2014)

    Article  Google Scholar 

  17. Mar, T., Zaunseder, S., Martínez, J.P., Llamedo, M., Poll, R.: Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 58(8), 2168–2177 (2011)

    Article  Google Scholar 

  18. Chia, C.C., Syed, Z.: Scalable noise mining in long-term electrocardiographic time-series to predict death following heart attacks. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 125–134. ACM (2014)

    Google Scholar 

  19. Huikuri, H.V., Stein, P.K.: Heart rate variability in risk stratification of cardiac patients. Prog. Cardiovasc. Dis. 56(2), 153–159 (2013)

    Article  Google Scholar 

  20. Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A., Lawrence, D.E.: Apache-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9(8), 591–597 (1981)

    Article  Google Scholar 

  21. Le Gall, J.R., Loirat, P., Alperovitch, A., Glaser, P., Granthil, C., Mathieu, D., Mercier, P., Thomas, R., Villers, D.: A simplified acute physiology score for ICU patients. Crit. Care Med. 12(11), 975–977 (1984)

    Article  Google Scholar 

  22. Teasdale, G., Jennett, B.: Assessment of coma and impaired consciousness: a practical scale. Lancet 304(7872), 81–84 (1974)

    Article  Google Scholar 

  23. Grmec, S., Gasparovic, V.: Comparison of APACHE II, MEES and Glasgow Coma Scale in patients with nontraumatic coma for prediction of mortality. CRITICAL CARE-LONDON- 5(1), 19–23 (2001)

    Article  Google Scholar 

  24. Sakr, Y., Krauss, C., Amaral, A., Réa-Neto, A., Specht, M., Reinhart, K., Marx, G.: Comparison of the performance of SAPS II, SAPS 3, APACHE II, and their customized prognostic models in a surgical intensive care unit. Br. J. Anaesth. 101(6), 798–803 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Natural Science Foundation of China (No. 61170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hong, S., Wu, M., Zhang, J., Li, H. (2017). Assessing Death Risk of Patients with Cardiovascular Disease from Long-Term Electrocardiogram Streams Summarization. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10234. Springer, Cham. https://doi.org/10.1007/978-3-319-57454-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57454-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57453-0

  • Online ISBN: 978-3-319-57454-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics