Abstract
A complete weighted graph \(G= (V, E, w)\) is called \(\varDelta _{\beta }\)-metric, for some \(\beta \ge 1/2\), if G satisfies the \(\beta \)-triangle inequality, i.e., \(w(u,v) \le \beta \cdot (w(u,x) + w(x,v))\) for all vertices \(u,v,x\in V\). Given a \(\varDelta _{\beta }\)-metric graph \(G=(V, E, w)\) and a center \(c\in V\), and an integer p, the \(\varDelta _{\beta }\)-Star p-Hub Center Problem (\(\varDelta _{\beta }\)-SpHCP) is to find a depth-2 spanning tree T of G rooted at c such that c has exactly p children and the diameter of T is minimized. The children of c in T are called hubs. For \(\beta = 1\), \(\varDelta _{\beta }\)-SpHCP is NP-hard. (Chen et al., COCOON 2016) proved that for any \(\varepsilon >0\), it is NP-hard to approximate the \(\varDelta _{\beta }\)-SpHCP to within a ratio \(1.5-\varepsilon \) for \(\beta = 1\). In the same paper, a \(\frac{5}{3}\)-approximation algorithm was given for \(\varDelta _{\beta }\)-SpHCP for \(\beta = 1\). In this paper, we study \(\varDelta _{\beta }\)-SpHCP for all \(\beta \ge \frac{1}{2}\). We show that for any \(\varepsilon > 0\), to approximate the \(\varDelta _{\beta }\)-SpHCP to a ratio \(g(\beta ) - \varepsilon \) is NP-hard and we give \(r(\beta )\)-approximation algorithms for the same problem where \(g(\beta )\) and \(r(\beta )\) are functions of \(\beta \). If \(\beta \le \frac{3 - \sqrt{3}}{2}\), we have \(r(\beta ) = g(\beta ) = 1\), i.e., \(\varDelta _{\beta }\)-SpHCP is polynomial time solvable. If \(\frac{3-\sqrt{3}}{2} < \beta \le \frac{2}{3}\), we have \(r(\beta ) = g(\beta ) = \frac{1 + 2\beta - 2\beta ^2}{4(1-\beta )}\). For \(\frac{2}{3} \le \beta \le 1\), \(r(\beta ) = \min \{\frac{1 + 2\beta - 2\beta ^2}{4(1-\beta )}, 1 + \frac{4\beta ^2}{5\beta +1}\}\). Moreover, for \(\beta \ge 1\), we have \(r(\beta ) = \min \{\beta + \frac{4\beta ^2- 2\beta }{2 + \beta }, 2\beta + 1\}\). For \(\beta \ge 2\), the approximability of the problem (i.e., upper and lower bound) is linear in \(\beta \).
Parts of this research were supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2221–E–006–164–MY3, MOST 103–2218–E–006–019–MY3, and MOST 103-2221-E-006-135-MY3. L.-H. Chen, L.-J. Hung (corresponding author), and C.-W. Lee are supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2811–E–006–071, –046, and –022, respectively.
R. Klasing–Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). Research supported by the LaBRI under the “Projets émergents” program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190, 1–21 (2008)
Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38, 59–67 (2001)
Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM J. Discret. Math. 8, 1–16 (1995)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)
Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)
Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1_7
Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On k-edge-connectivity problems with sharpened triangle inequality. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 189–200. Springer, Heidelberg (2003). doi:10.1007/3-540-44849-7_24
Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-connectivity problems with sharpened triangle inequality. J. Discret. Algorithms 6(4), 605–617 (2008)
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000). doi:10.1007/3-540-46521-9_7
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000). doi:10.1007/3-540-46541-3_32
Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, Boca Raton (2007). Chapter 31
Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO - Theor. Inform. Appl. 34, 213–255 (2000)
Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)
Campbell, J.F., Ernst, A.T.: Hub location problems. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373–407. Springer, Berlin (2002)
Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for single allocation \(k\)-hub center problem. In: Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2016), pp. 13–18 (2016)
Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for the star k-hub center problem in metric graphs. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 222–234. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1_18
Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 2230–2241 (2009)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)
Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Pacific Grove (1996)
Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33, 533–550 (1986)
Hromkovič, J.: Stability of approximation algorithms for hard optimization problems. In: Pavelka, J., Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 29–47. Springer, Heidelberg (1999). doi:10.1007/3-540-47849-3_2
Kara, B.Y., Tansel, B.Ç.: On the single-assignment \(p\)-hub center problem. Eur. J. Oper. Res. 125, 648–655 (2000)
Liang, H.: The hardness and approximation of the star p-hub center problem. Oper. Res. Lett. 41, 138–141 (2013)
Meyer, T., Ernst, A., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009)
O’Kelly, M.E., Miller, H.J.: Solution strategies for the single facility minimax hub location problem. Pap. Reg. Sci. 70, 376–380 (1991)
Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optimization Letters 1, 1–13 (2015). doi:10.1007/s11590-015-0867-6
Yaman, H., Elloumi, S.: Star \(p\)-hub center problem and star \(p\)-hub median problem with bounded path lengths. Comput. Oper. Res. 39, 2725–2732 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chen, LH., Hsieh, SY., Hung, LJ., Klasing, R., Lee, CW., Wu, B.Y. (2017). On the Complexity of the Star p-hub Center Problem with Parameterized Triangle Inequality. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-57586-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57585-8
Online ISBN: 978-3-319-57586-5
eBook Packages: Computer ScienceComputer Science (R0)