Skip to main content

On the Complexity of the Star p-hub Center Problem with Parameterized Triangle Inequality

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10236))

Included in the following conference series:

Abstract

A complete weighted graph \(G= (V, E, w)\) is called \(\varDelta _{\beta }\)-metric, for some \(\beta \ge 1/2\), if G satisfies the \(\beta \)-triangle inequality, i.e., \(w(u,v) \le \beta \cdot (w(u,x) + w(x,v))\) for all vertices \(u,v,x\in V\). Given a \(\varDelta _{\beta }\)-metric graph \(G=(V, E, w)\) and a center \(c\in V\), and an integer p, the \(\varDelta _{\beta }\)-Star p-Hub Center Problem (\(\varDelta _{\beta }\)-SpHCP) is to find a depth-2 spanning tree T of G rooted at c such that c has exactly p children and the diameter of T is minimized. The children of c in T are called hubs. For \(\beta = 1\), \(\varDelta _{\beta }\)-SpHCP is NP-hard. (Chen et al., COCOON 2016) proved that for any \(\varepsilon >0\), it is NP-hard to approximate the \(\varDelta _{\beta }\)-SpHCP to within a ratio \(1.5-\varepsilon \) for \(\beta = 1\). In the same paper, a \(\frac{5}{3}\)-approximation algorithm was given for \(\varDelta _{\beta }\)-SpHCP for \(\beta = 1\). In this paper, we study \(\varDelta _{\beta }\)-SpHCP for all \(\beta \ge \frac{1}{2}\). We show that for any \(\varepsilon > 0\), to approximate the \(\varDelta _{\beta }\)-SpHCP to a ratio \(g(\beta ) - \varepsilon \) is NP-hard and we give \(r(\beta )\)-approximation algorithms for the same problem where \(g(\beta )\) and \(r(\beta )\) are functions of \(\beta \). If \(\beta \le \frac{3 - \sqrt{3}}{2}\), we have \(r(\beta ) = g(\beta ) = 1\), i.e., \(\varDelta _{\beta }\)-SpHCP is polynomial time solvable. If \(\frac{3-\sqrt{3}}{2} < \beta \le \frac{2}{3}\), we have \(r(\beta ) = g(\beta ) = \frac{1 + 2\beta - 2\beta ^2}{4(1-\beta )}\). For \(\frac{2}{3} \le \beta \le 1\), \(r(\beta ) = \min \{\frac{1 + 2\beta - 2\beta ^2}{4(1-\beta )}, 1 + \frac{4\beta ^2}{5\beta +1}\}\). Moreover, for \(\beta \ge 1\), we have \(r(\beta ) = \min \{\beta + \frac{4\beta ^2- 2\beta }{2 + \beta }, 2\beta + 1\}\). For \(\beta \ge 2\), the approximability of the problem (i.e., upper and lower bound) is linear in \(\beta \).

Parts of this research were supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2221–E–006–164–MY3, MOST 103–2218–E–006–019–MY3, and MOST 103-2221-E-006-135-MY3. L.-H. Chen, L.-J. Hung (corresponding author), and C.-W. Lee are supported by the Ministry of Science and Technology of Taiwan under grants MOST 105–2811–E–006–071, –046, and –022, respectively.

R. Klasing–Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02). Research supported by the LaBRI under the “Projets émergents” program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190, 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38, 59–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM J. Discret. Math. 8, 1–16 (1995)

    Article  MATH  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  5. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 59–70. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1_7

    Chapter  Google Scholar 

  7. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On k-edge-connectivity problems with sharpened triangle inequality. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 189–200. Springer, Heidelberg (2003). doi:10.1007/3-540-44849-7_24

    Chapter  Google Scholar 

  8. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-connectivity problems with sharpened triangle inequality. J. Discret. Algorithms 6(4), 605–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000). doi:10.1007/3-540-46521-9_7

    Chapter  Google Scholar 

  11. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer, Heidelberg (2000). doi:10.1007/3-540-46541-3_32

    Chapter  Google Scholar 

  12. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, Boca Raton (2007). Chapter 31

    Google Scholar 

  13. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO - Theor. Inform. Appl. 34, 213–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  MATH  Google Scholar 

  15. Campbell, J.F., Ernst, A.T.: Hub location problems. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373–407. Springer, Berlin (2002)

    Chapter  Google Scholar 

  16. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for single allocation \(k\)-hub center problem. In: Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2016), pp. 13–18 (2016)

    Google Scholar 

  17. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for the star k-hub center problem in metric graphs. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 222–234. Springer, Cham (2016). doi:10.1007/978-3-319-42634-1_18

    Chapter  Google Scholar 

  18. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 2230–2241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Pacific Grove (1996)

    MATH  Google Scholar 

  21. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33, 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  22. Hromkovič, J.: Stability of approximation algorithms for hard optimization problems. In: Pavelka, J., Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 29–47. Springer, Heidelberg (1999). doi:10.1007/3-540-47849-3_2

    Chapter  Google Scholar 

  23. Kara, B.Y., Tansel, B.Ç.: On the single-assignment \(p\)-hub center problem. Eur. J. Oper. Res. 125, 648–655 (2000)

    Article  MATH  Google Scholar 

  24. Liang, H.: The hardness and approximation of the star p-hub center problem. Oper. Res. Lett. 41, 138–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, T., Ernst, A., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009)

    Article  MATH  Google Scholar 

  26. O’Kelly, M.E., Miller, H.J.: Solution strategies for the single facility minimax hub location problem. Pap. Reg. Sci. 70, 376–380 (1991)

    Google Scholar 

  27. Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optimization Letters 1, 1–13 (2015). doi:10.1007/s11590-015-0867-6

    Google Scholar 

  28. Yaman, H., Elloumi, S.: Star \(p\)-hub center problem and star \(p\)-hub median problem with bounded path lengths. Comput. Oper. Res. 39, 2725–2732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ju Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, LH., Hsieh, SY., Hung, LJ., Klasing, R., Lee, CW., Wu, B.Y. (2017). On the Complexity of the Star p-hub Center Problem with Parameterized Triangle Inequality. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57586-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57585-8

  • Online ISBN: 978-3-319-57586-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics