Skip to main content

On the Complexity of Finding a Potential Community

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10236))

Included in the following conference series:

  • 1123 Accesses

Abstract

An independent 2-clique of a graph is a subset of vertices that is an independent set and such that any two vertices inside have a common neighbor outside. In this paper, we study the complexity of finding an independent 2-clique of maximum size in several graph classes and we compare its complexity with the complexity of maximum independent set. We prove that this problem is NP-hard on apex graphs, APX-hard on line graphs, not \(n^{1/2-\epsilon }\)-approximable on bipartite graphs and not \(n^{1-\epsilon }\)-approximable on split graphs, while it is polynomial-time solvable on graphs of bounded degree and their complements, graphs of bounded treewidth, planar graphs, \((C_3,C_6)\)-free graphs, threshold graphs, interval graphs and cographs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev, V.E.: On the local restrictions effect on the complexity of finding the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13 (1983)

    Google Scholar 

  2. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997). doi:10.1007/3-540-62592-5_80

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burlingham, L.S., Corneil, D.G., Lerchs, H.: Complement reducible graphs. Discret. Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs iii: tree-decompositions, minors and complexity issues. RAIRO - Informatique Théorique et Appl. 26, 257–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. Congressus Numerantium No. XV, pp. 3–13 (1976)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. Theoret. Comput. Sci. 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12(4), 459–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nord. J. Comput. 14, 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 169–190 (1950)

    Article  MathSciNet  Google Scholar 

  13. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)

    Article  Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theor. Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pontoizeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bazgan, C., Pontoizeau, T., Tuza, Z. (2017). On the Complexity of Finding a Potential Community. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57586-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57585-8

  • Online ISBN: 978-3-319-57586-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics